DSA — March 8, 2021
Topics: FFT algorithm, STFT, ISTFT, OLA reconstruction, spectrograms, phase
vocoder, time-scale & pitch-scale modification, resampling, COLA window

property.

STFT signal processing system

—
—
—

X=| 7" X0 "~~~
Rl -~ X -
analysishop kR, _——7 x5 ~~—_|
STFT
Xk,m i
modify
Yk,m \
ISTFT
Y=L _-——""y0 T~—_. window + overlap-add
—Rs—L——"_ Y1 " —--
synthesishop —Ry— _ —— " yy ~~__|

DTFT 12SP — Ch.9
frequency resolution and windowing 0&S - Ch.10

The discrete Fourier transform (DFT) and its fast implementation, the
fast Fourier transform (FFT), have three major uses in DSP:

(a) the numerical computation of the frequency spectrum of a signal
(b) the efficient implementation of comnvolution by the FET

(¢) the coding of waveforms, such as speech or pictures, for efficient trans-
mission and storage

DTFT Computation

We discuss some computational aspects of the DTFT. Consider a length-L
signal z(n), n =0,1,..., L — 1, which may have been pre-windowed by a
length- L non-rectangular window. Its DTFT can be written in the simplified
notation:

)

1
X(w) = z(n)e 7™ (DTFT of length-L signal) (1)

e

|
o

[t may be computed at any desired value of w in the Nyquist interval
—7m < w < m. Itis customary in the context of developing computational
algorithms to take advantage of the periodicity of X (w) (with period 27)
and map the conventional symmetric Nyquist interval —7 < w < 7 onto
the right-sided one 0 < w < 27, referred to as the DFT Nyquist interval.

b X ®) A x (o)
: : : - : : . =
T -0, 0 o T 2n ® - 0 o ™ 5 t on ®
e ON
ordinary DFT
le—— Nyquist —» le—— Nyquist —

interval interval

DFT

The N-point DFT of a length-L signal 1s defined to be the DTFT of the sig-
nal evaluated at NV equally-spaced frequencies over the right-sided Nyquist
interval, 0 < w < 27w, The DFT frequencies are defined in radians per
sample as follows:

2k
wp=——1|, k=0,1,...,] N —1 (5)
or, in Hz
kfe .. |
Jre = { , k=0.1,....N—1 (6)
Thus, the N-point DFT will be, for £ = 0.1, ..., N —1:
L—1

X(wk) = Z r(n)e ™| (N-point DFT of length-L signal) (7)
n=>0

The N-dimensional complex DFT array X, = X(wy). k=0,1,..., N —1

can be computed in a variety of ways:

(a) using the freqz function

(b) by the FFT algorithm, provided N > L
(¢) in matrix form using the N x L DFT matrix, discussed below.

T x = ... % define length-L input signal

k = 0:N-1; % DFT index

om = Z2*pix*k/N; % DFT frequencies

X = fregz(x,1l,om); % N-point DFT

X = fft(x,N); % correct only if N>=L

X = A * X % A = NxL DFT matrix, x = Lxl column

simplified notation for N-point DFT:

L—1
X = E z(n)e~2mikn/N
n=>0

The value at &k = NN, corresponding to wy = 2, is not computed because
by periodicity it equals the value at wy = 0, that is, X (wy) = X(wp). The
bin-width, i.e., the spacing of the DFT frequencies is in rads/sample or Hz,

2m [
— or, Afpin = —
N Join =5

The standard DFT has its N frequencies distributed evenly over the full
Nyquist interval, [0, 27), as shown below, but one can also use equally-
spaced frequencies of any desired subinterval,

Awpip = (8)

X(w) X(w)
— b ﬂ‘mbin = (mb_ma]"w
X0l X, ¥ Xy Xy —>| |
2 . T

\ }=

Wy ® @y - T - N 21 T ©q 0 ©p T

Fig. 1 N-point DTFTs over [0, 27) and over subinterval [wa, ws), for N = 10,

The N computed values X (wy,) can also be thought of as the evaluation
of the z-transform X (z) at the following z-points on the unit circle:

L—1
X(wp) = X(z) =Y a(n)z" 9)
n=>0

2 = 9k = 2TIR/N E=0.1..... N -1 (10)

These are recognized as the Nth roots of unitv, that is, the N solutions of the
equation =" = 1. They are evenly spaced around the unit circle at relative
angle increments of 27 /N, as shown in Fig. 2.

-
S

Fig. 2 Nth roots of unity, for N = 8.

Note also that the periodicity of X (w) with period 27 is reflected in the
periodicity of the DFT Xj, = X(wy) in the index £ with period N. This
follows from:

2r(k+N) 2nk

Wk+N = \ =N + 2 = w + 27

which implies:

}irk_|_hr = JX(_LLJ;;_FN) =X (U.;'k + :)?T) — KF(LLJ,I_;) =){k

Also, if the time signal x(n) 1s real-valued, the Hermitian property of the
DTFT can be combined with its 27 periodicity to give,

XN(w) = X(—w) = X271 — w)

and for the DFT,
X (wg) = X(2m — wy)

or. in terms of the DFT index.

Xy =Xn_| k=0,1,...,N—1

noting also that Xj = X'y = Xy, 1.e., Xp 1s real-valued.

Having computed an Npoint FFT, Xz, &£ = 0.1, ..., N — 1, it should be
remembered that only the first N/2 outputs correspond to non-negative fre-
quencies, that is,

X = X(wy) E=0.1,.... 5~ 1
2k)
Y

whereas the remaining N/2 — 1 outputs get mapped to negative frequencies
by the periodicity and conjugation conditions,

N, = J{ik = rRr_k = X7 (wh-'_k) = }ir*(—w;g). ., k=
2m(N — k)

WN_ — N = ?-?'I' — W

The MATLAB function fftshift can be used to recenter the computed DFT/FFT
to the symmetric Nyquist interval, or the symmetric index interval,

) N_ _N
—ri_wk{ﬂ_. —2_ _2

—1
with usage,

X_shifted = fftshift(X);

Matrix Form of DFT

The N-point DFT (7) can be thought of as a linear matrix transformation
of the L-dimensional vector of time data into an /N-dimensional vector of

frequency data:

[Irp] [)f[} i
I DFT JY]_
X = . — X — .
rr—1J _—XN—I A

with DFT components by X, = X(wg). £ = 0,1,..., N — 1. The linear
transformation is implemented by an N x . matrix A, to be referred to as
the DFT matrix, and can be written compactly as follows:

X = DFT(x) = Ax

Or, CD]T]IJDI]EI]I-W’iSEZ

L—-1
—/Yk — E —'4113-?1 Ln
n=0

(matrix form of DFT)

k=0,1..., N -1

The matrix elements Ay, are defined from Eq. (7):

A;m — €

—Jjwkn — e_gﬂjkﬂfh'r _ Ir['dkrn ' !Il = “ J_ e ;"\"T —]_

n==01 ..., L -1

(16)

(17)

(18)

For convenience, we defined the so-called rwiddle factor, Wy, as the com-
plex number: _
T][rj\; _ (:'.’_QTT‘T /N (19)

Thus, the DFT matrix for an N-point DFT is built from the powers of Wy.
Note that the first row (k£ = 0) and first column (n = 0) of A are always
unity:

Ao, =1, 0<n<L -1 and Arp=1, 0<EZSN-1
The matrix A can be built from its second row (k£ = 1), consisting of the
successive powers of Wy

Ay, = Wy, n=~01..., L—1

It follows from the definition that the &th row is obtained by raising the
second row to the kth power—element by element:

Ajn = Whr — (Wn)k = A%

Some examples of twiddle factors, DFT matrices, and DFTs are as fol-
lows: For L. = N and N = 2.4 8, we have:

Wy=e 2M/2 = ¢™ = 1
Wy = e~/ — ommi/2 cos(m/2) — jsin(m/2) = —j

, | . _ 1—
Wy = e72m/8 — ¢=m/4 — cos(7/4) — jsin(m/4) = -

(20)

"

I

The corresponding 2-point and 4-point DFET matrices are:

A B O I |
4= H--’J = L —1}
11 17 1]
B N 21
oo owEowd owpt -1 1 1
1 nf Hf T--I--*f’ |] 1 7 =1 —y]

The 2-point and 4-point DFTs of a length-2 and a length-4 signal will be:

Xo| [1 1] [xo] [xo+x
}{1 N _1 —1 I N g — a1
Xo| [t 1 1 1] [ao] (22)
_/Yl o 1 —j —1 j I
ng N 1 —1 1 —1 I9
|

X3 J =1 —J| |73

Thus, the 2-point DFT is formed by taking the sum and difference of the
two time samples. We will see later that the 2-point DFT is a convenient
starting point for the merging operation in performing the FFT by hand.

The twiddle factor Wy satisfies, W& = 1. and therefore it is one of
the Nth roots of unity: indeed, in the notation of Eq. (10), it is the root
Wy = zy_1 and 1s shown in Fig. 2. Actually, all the successive powers
Wk, k=0.1,.... N — 1 are Nth roots of unity, but in reverse order (i.e.,
clockwise) than the z; of Eq. (10):

W =e2mkIN = » =271 k=0,1,...,N -1 (23)

Figure 5 shows Wy and its successive powers for the values N = 2.4, 8.

Because Wy = 1, the exponents in W3 can be reduced modulo-V, that is,

we may replace them by I-I--‘ii?kj“mdw}.

W,
=W, ¢ \¢1 Wf¢/ \¢l
_ ;/Jrz_j

Fig. 5 Twiddle factor lookup tables for N = 2,4, 8.

For example, using the property 17} = 1, we may reduce all the powers
of TV, in the 4-point DFT matrix of Eq. (21) to one of the four powers W},
k=0,1,2, 3 and write it as

11 1 I 11 | I
1wy Wi wp 1 Wy, w2 ow}
1 w2 wi w§ 1 w2 1 w2

The entries in A can be read off from the circular lookup table of powers of
Wy in Fig. 5, giving

and for NV = 8,

L%:%;.Tﬁ:y W3 = Y Wi =1
R R , 1+
W = J?j Uﬁ:;,{@::J;

Inverse DFT

The problem of inverting an N-point DFT is the problem of recovering the
original length-L signal x from its N-point DFT X, that is, inverting the
relationship:

X = Ax= AX (40)

When L > N, the matrix A is not invertible. As we saw, there are in
this case several possible solutions x, all satisfying Eq. (40) and having the
same mod-/N reduction X.

Among these solutions, the only one that is uniquely obtainable from the
knowledge of the DFT vector X is X. The corresponding DFT matrix Ais
an N x N square invertible matrix. Thus, we define the inverse DFT by

X = IDFT(X) = A~'X| (inverse DFT) (41)

Or. CD]T]IJGI]EIH-W’iSE.

-
<
[

A~

7= (A Y, X,, n=01... N-1 (42)
0

o
I

The inverse A~! can be obtained without having to perform a matrix
inversion by using the following unitarity property of the DFT matrix A:

%I A = Iy (43)

where [1s the N-dimensional identity matrix and A* is the complex conju-
gate of A, obtained by conjugating every matrix element of A. For example,
for N = 4, we can verify easily:

11 1 111t 1 1 1 1 00 0
Ly _ L1 = =1 gl |t J =1 = _|0 100
4° 411 =1 1 =111 =1 1 —=1 0010

1§ =1 —jll1 =5 =1 000 1

Multiplying both sides of Eq. (43) by A~!, we obtain for the matrix inverse:

A= —
N

1 ~
A*

Thus, the IDFT (41) can be written in the form:

x = IDFT(X) =

1

(inverse DFT)

(44)

(45)

We note also that the IDFT can be thought of as a DFT in the following
sense. Introducing a second conjugation oparation, we have:

=

A*X = (AX*)* = [DFT(X")]

where the matrix A acting on the conjugated vector X* is the DFT of that
vector. Dividing by N, we have:

1
IDFT(X) =

mnT

[DFT(X")]" (46)

4

Replacing DFT by FFT, we get a convenient inverse FFT formula, which
uses an FFT to perform the IFFT. It is used in most FFT routines.

1

AT

[FFT(X) = — [FFT(X")]" (47)

4

Using Eq. (18) the matrix elements of A= are:

~ I ~ 1

_ \ 1
(AT = A =

where we used the property Wy = e?/N = I-I--}}l. Then. Eq. (42) can be
written in the form:

k
<
-y

1
N
k

(IDFT) Tn = W™ Xl n=0,1,...,1 NV —1 (48)

I
o

In terms of the DFT frequencies wy,, we have X = X (wy) and

U —n.k ?ijnfh'r _ ijkn

Therefore. the inverse DFT can be written in the alternative form:

=
<
—

, | — :
(IDFT) r(n) = N X(wp)e?*™ | n=0,1.....N—1 (49)
0

o
I

In summary, the inverse of an /N-point DFT reconstructs only the wrapped
version of the original signal that was transformed.

!

ix DFT

mod-N

reduction

[= >

)
N
L]

Fig. 9 Forward and inverse N-point DFTs.

In order for the IDFT to generate the original unwrapped signal X, it is
necessary to have X = x. This happens only if the DFT length N is at least
L. so that there will be only one length-/N sub-block in x and there will be
nothing to wrap around. Thus, we have the condition:

Xx=x onlyif N>1L (51)

If N = L,thenEq. (51)isexact. [f N > [, then we must pad N —L zeros
at the end of x so that the two sides of Eq. (51) have compatible lengths. If
N < L, the wrapped and original signals will be different because there will
be several length-/NV sub-blocks in x

x#x if N<L (52)

FFT

The fast Fourier transform is a fast implementation of the DFT. It is based
on a divide-and-conquer approach in which the DFT computation 1s divided
into smaller, simpler, problems and the final DFT i1s rebuilt from the simpler
DFETs. For a comprehensive review, history, and recent results, see the [2SP
references [223-244, 303].

Another application of this divide-and-conquer approach is the computa-
tion of very large FFTs, in which the time data and their DFT are too large
to be stored in main memory. In such cases the FFT is done in parts and the
results are pieced together to form the overall FFT. and saved in secondary
storage such as on hard disk.

In the simplest Cooley-Tukey version of the FFT, the dimension of the
DFT is successively divided in half until it becomes unity. This requires the
initial dimension N to be a power of two:

N =28 = B = logy(N) (53)

The problem of computing the N-point DFT 1s replaced by the simpler
problems of computing two (N/2)-point DFTs. Each of these is replaced
by two (N /4)-point DFTs, and so on.

We will see shortly that an N-point DFT can be rebuilt from two (N/2)-
point DFTs by an additional cost of N/2 complex multiplications. This
basic merging step is shown in Fig. 10.

I-DFT 2-DFT 4-DFT 8-DFT

Basic Merging Unit m,gl;} 2
=
N/2-DFT ™. \
N-DFT g
N/2-DFT P T >)

no. of additional
multiplications —

[i >l >
stage 1 stage 2 stage 3

Fig. 10 Merging two N /2-DFTs into an N-DFT and its repeated application.

Thus. if we compute the two (N/2)-DFTs directly. at a cost of (N/2)?
multiplications each, the total cost of rebuilding the full N-DFT will be:

N* N N?! N N?
2 +5 =5 +t5~ 5

2

where for large /N the quadratic term dominates. This amounts to 50 percent
savings over computing the N-point DFT directly at a cost of N2,

Similarly, if the two (N/2)-DFTs were computed indirectly by rebuild-
ing each of them from two (N/4)-DFTs. the total cost for rebuilding an
N-DFT would be:

N’ N N N> N N?
(T) +27+5-TH+25=T

1) T4 T2 4 T 27 g

Thus, we gain another factor of two, or a factor of four in efficiency over
the direct N-point DFT. In the above equation, there are 4 direct (/N/4)-
DFTs at a cost of (N/4)? each, requiring an additional cost of N/4 each
to merge them into (N/2)-DFTs, which require another N /2 for the final
merge.

Proceeding in a similar fashion, we can show that if we start with (/N /2™)-

point DFTs and perform m successive merging steps,
A2 N
:;m 1 %m (54)

The first term, N?/2™, corresponds to performing the initial (N/2™)-
point DFTs directly. Because there are 2™ of them, they will require a total
cost of 2™(N/2™)2 = N2 /2™,

However, if the subdivision process is continued for m = B stages, as
shown in Fig. 10, the final dimension will be N/2™ = N/2B = 1, which
requires no computation at all because the I-point DET of a [-point signal
is itself.

In this case, the first term in Eq. (54) will be absent, and the total cost
will arise from the second term. Thus, carrying out the subdivision/merging
process to its logical extreme of m = B = logy(/N) stages. allows the
computation to be done in:

Lo | =
=
I
Lo | =

Nlogy(N)| (FFT computational cost) (35)

[t can be seen Fig. 10 that the total number of multiplications needed
to perform all the mergings in each stage is N/2, and B is the number of
stages. Thus, we may interpret Eq. (55) as,

mT
LY
|
4

(total multiplications) = (multiplications per stage) x (no. stages) = —B

For the N = 8 example shown in Fig. 10, we have B = log,(8) = 3
stages and /2 = 8/2 = 4 multiplications per stage. Therefore, the total
costis BN/2 = 3 -4 = 12 multiplications.

Next, we discuss the so-called decimation-in-time radix-2 FFT algo-
rithm. There 1s also a decimation-in-frequency version, which is very simi-
lar. The term radix-2 refers to the choice of NV as a power of 2. in Eq. (53).

Given a length-/V sequence x(n), n =0,1,..., N — 1, its N-point DFT
X (k) = X(wg) can be written in the component-form of Eq. (17):

Zu kn). EF=0.1.....N—1 (56)

The summation index n ranges over both even and odd values in the
range 0 < n < N — 1. By grouping the even-indexed and odd-indexed
terms, we may rewrite Eq. (56) as

X (k) = Zu (2n) . +ZH 2n+D) o (2n + 1)

To determine the proper range of summations over n, we consider the two
terms separately. For the even-indexed terms, the index 2n must be within
the range 0 < 2n < N — 1. But, because V is even (a power of two), the
upper limit N — 1 will be odd. Therefore, the highest even index will be
N — 2. This gives the range:

— 1

| N
0<2<N-2 = 0<n<3

Similarly. for the odd-indexed terms. we must have 0 < 2n 4+ 1 < N — 1.
Now the upper limit can be realized, but the lower one cannot; the smallest
odd index 1s unity. Thus, we have:

| i .. - N
1<2n+1<N-1 = 0<2n<N-2 = [}g-rz§§—1
Therefore. the summation limits are the same for both terms:

N/2-1 N/2—1

Z WAz @2n) + Y W a0 +1) (57

n=>0

This expression leads us to define the two length-(N/2) subsequences:

g(n) = z(2n) N
, =0,1,...,——1 58
hin)=x(2n+1) " "2 (58)

and their (N/2)-point DFTs:

N/2-1
Z W2 g(n v
o F=0.1... 5 -1 (59)

Z W f:t}z h(n)

Then, the two terms of Eq. (57) can be expressed in terms of G(k) and
H (k). We note that the twiddle factors W and Wy /5 of orders N and NV/2
are related as follows:

W s = =20/ (N/2) — o=ami/N _ yyr2
Therefore, we may write:
Wl = (Wykn = wihn, o W@ = wk wke = wkwkn,

Using the definitions (58), Eq. (57) can be written as:

N/2—1 N/2—1
X (k) E;Ihmﬂn+ﬂk§:ﬂhmhm
n=>0
and using Eq. (39),
X(k)=G(k)+WEH(k)| k=0.1,...,.N—1 (60)

This is the basic merging result. It states that X (%) can be rebuilt out of the
two (N/2)-point DFTs Gi(k) and H (k). There are N additional multiplica-
tions, WE H (k).

Using the periodicity of GG(k) and H (k). the additional multiplications
may be reduced by half to N/2. To see this. we split the full index range
0 <k < N — 1 into two half-ranges parametrized by the two indices & and
k+ N/2:

Uﬁﬂﬁ —1 —

|_\.>| =

Therefore, we may write the N equations (60) as two groups of N/2
equations:

X (k)= G(k)+WrH(k) N

, k=0,1,..., 51
X(k+N/2) = Gk + N/2) + WP H(E + N/2) 2

Using the periodicity property that any DFT is periodic in & with period its
length, we have G'(k + N/2) = G/(k) and H(k + N/2) = H(k). We also
have the twiddle factor property:

N2 _ (E—Eirj,’N)NfQ

_ i
Va S L |

Then, the DFT merging equations become:

X(k) = G(k) +WEH(k N
) = GLE) o W o N e
X(k+ N/2) = G(k) — Wk H(k) 2

They are known as the buitterfly merging equations. The upper group gen-
erates the upper half of the N-dimensional DFT vector X, and the lower
group generates the lower half. The N/2 multiplications W& H (k) may be
used both in the upper and the lower equations, thus reducing the total extra
merging cost to NV/2. Vectorially, we may write them in the form:

"X, 1 [Go 1 THy 1 _T"T-";E.r -
X1 |G . H,) Wi

_skrh-'j'ﬂ—l] _C;ﬂr,'rQ—l_ —Hh'rfﬂ—l | _T"T—"'},?rﬁ_l_ (62)
Xnp] [Go 1 [Ho] [1%

X+ | | Ga I,) Wl

| Xn_1 | Gnja—1 | Hpyjo—1 _I-‘i—-"' F{s:rjz—l _

where the indicated multiplication 1s meant to be component-wise. To-
gether, the two equations generate the full DFT vector X. The operations
are shown below.

N/2-DFT N-DFT

T A
N2 G
+
{_ ___________ X
N2 Wy |H -
Y ¥

Fig. 11 Butterfly merging builds upper and lower halves of length- N DFT.

As an example, consider the case N = 2. The twiddle factor is now
Wy = —1. but only its zeroth power appears W3 = 1. Thus. we get two
[-dimensional vectors. making up the final 2-dimensional DFT:

[Xo] = [Go] + [Ho 73]
1] = [Go] - [Ha W3]

For N = 4, we have W, = —j, and only the powers W, W/ appear:
[Xo| [Go] . Ho WY
Xi| |Gy T | HoWy
—){9 | B [;’D_ —H 0 ”:E |
_)fg _ o i ?1 | B i H 1 Ulll _
And. for N = 8, we have:
Xo| [Gol [HoWdT
JY]_ L C]f 1 —I— H 1 I"I"'ral
ng N & 2 H) HTB?
_){3 | i G 3] i H 3 ”783 |
X, | (G| [HoWY
){5 B G 1 H 1 Hg
)(6 e 2 B H 9 Hg
JYT G 3 H 3 H:;_?

To begin the merging process shown in Fig. 10, we need to know the
starting one-dimensional DFTs. Once these are known, they may be merged
into DFTs of dimension 2,4.8, and so on. The starting 1-point DFTs are
obtained by the so-called shuffling or bit reversal of the input time sequence.
Thus. the typical FFT algorithm consists of three conceptual parts:

[. Shuffling the N-dimensional input into N length-1 signals.
2. Performing N length-1 DFTs.
3. Merging the N length-1 DFTs into one N-point DFT.

Performing the one-dimensional DFTs is only a conceptual part that lets
us pass from the time to the frequency domain. Computationally, it is trivial
because the one-point DFT X = [X{] of a 1-point signal x = [x¢] is itself,
that is. Xo = xp. as follows by setting N = 1 in Eq. (56).

The shuffling process is shown in Fig. 12 for N = 8. Ithas B = logy(V)
stages. During the first stage, the given length- /N signal block x 1s divided
into two length-(/V/2) blocks g and h by putting every other sample into g
and the remaining samples into h.

During the second stage, the same subdivision 1s applied to g, resulting
into the length-(/N/4) blocks {a, b} and to h resulting into the blocks {c, d},
and so on. Eventually, the signal x is time-decimated down to N length-1
subsequences.

These subsequences form the starting point of the DFT merging process,
which 1s depicted in Fig. 13 for N = 8. The butterfly merging operations
are applied to each pair of DFTs to generate the next DFT of doubled di-
mension.

Po=Dpy

Qv=¢q, . etc.
—>
DFT-merge

[«—— bit reversal/shuffling ———}=— |-DFT —*

Fig. 12 Shuffling process generates N 1-dimensional signals.

8-DFT

4-DFT

o
o

|«—— stage | —»|le——stage 2 —»je——stage 3 —»|

2-DFT

I-DFT

ST S B R A)

=S4

0
8
1
8
2
8
3
8

—

G
G

G,

3

G

i

H,
H,
H,
H;,

ml

MD

Bmﬂ

B,

D, |W,

D,

DFT-merge

Fig. 13 DFT merging.

To summarize the operations, the shuffling process generates the smaller
and smaller signals:

x — {g.h} — {{a.b}. {c.d}} — --- — {l-point signals}
and the merging process rebuilds the corresponding DFTs:

{1-point DFTs} — --- — {{A.B},{C.D}} — {G.H} — X

The shuffling process may also be understood as a bit-reversal process,
shown in Fig. 14. Given a time index n in the range 0 < n < N — 1, it may
be represented in binary by B = log,(N) bits. For example, if N = 8 = 23,
we may represent n by three bits {bg, b1, bo }, which are zero or one:

n = (byby by) = by2% + b2 + by2°

The binary representations of the time index n for x,, are indicated in
Fig. 14, for both the input and the final shuffled output arrays. The bit-
reversed version of n is obtained by reversing the order of the bits:

r = bitrev(n) = (b by by) = bp2? + by 2! 4 by2°

We observe in Fig. 14 that the overall effect of the successive shuffling
stages is to put the nth sample of the input array into the rth slot of the output
array, that 1s, swap the locations of x,, with z,., where r is the bit-reverse of
n. Some slots are reverse-invariant so that » = n: those samples remain
unmoved. All the others get swapped with the samples at the corresponding
bit-reversed positions.

000
001
010
011
100
101
110
[11

Fig. 14 Shuffling is equivalent to bit reversal.

000
100
010
110
001
101
011
[11

FFT Computation

The built-in MATLAB function fft is very fast and efficient,

X

90 9P dP dP dP dP dP oP o of

= fft(x,N); % N-point FFT

if N is omitted, it uses N = L = length(x)
if N > L, it pads N-L zeros at the end of x before processing
if N < L, it incorrectly truncates the signal to length N
without wrapping it mod-N
this can be fixed by using datawrap,
X = fft(datawrap(x,N) ,N);

X can be an LxK matrix of K columns of length-L
the FFTs of all columns are returned into the NxK output X
again, correct calculation requires N >= L

Next, we present some FFT examples. In the merging operations from 2-
point to 4-point DFTs and from to 4-DFTs to 8-DFTs, the following twiddle
factors are used:

WOl T 1 :
W 1 Wl (1—4)/v2
1141 — | _ il I.-I.-—-"SQ - —j

el L= +)/v2.

Example. Using the FFT algorithm, compute the 4-point DET of the 4-point
wrapped signal of a previous example, x = [5, 0, —3, 4].

Solution: The sequence of FFT operations are shown in Fig. 15. The
shuffling operation was stopped at dimension 2, and the corresponding 2-
point DFTs were computed by taking the sum and difference of the time
sequences, as in Eq. (22). The DFT merging stage merges the two 2-DFTs
into the final 4-DFT.

5 5 | ,opr | 2) 2 6
0 >< 3] 8 8+4j
3 0 [>rppr| 4 | 1 4)

4 > 4 4 | 5 4j | 84

Fig. 15 4-point FFT example.

Example. Using the FFT algorithm, compute the 8-point DFT of the fol-
lowing 8-point signal:

x=[4,-3,20, -1, -2 3 17

Then, compute the inverse FFT of the result to recover the original time
sequence.

Solution: The required FFT operations are shown in Fig. 16. Again, the
shuffling stages stop with 2-dimensional signals which are transformed into
their 2-point DFTs by forming sums and differences.

|«— shuffling —»{«2-DFT»|« DFT merging >
41— 44 |3 |3 8 8 -
-3 -1 5 5 S5+ | 54 S+j+\2
2 >< 2 s |1|_|> 2 2 "\ f" 2+6j
0 3 a4 4 j 5. 5-j "‘%..f 5-j+j\2
-1 - -3 -5 -5 4 1 -4 /\ 12
2 2 " -1 - -1 145 | (1=HN2 2 / \"' 5+j-j\2
3 >< 0 1|1 1 6 -j } 6j -2-6j
1 - 1 1 i -1 5) j 147 [-(1+)N2 N2 5-j-/\2

Fig. 16 8-point FFT example.

The inverse FFT is carried out by the expression (47). The calculations
are shown in Fig. 17. First, the just computed DFT is complex conjugated.
Then, its FFT is computed by carrying out the required shuffling and merg-
ing processes. The result must be conjugated (it is real already) and divided
by N = & to recover the original sequence Xx.

l«—— shuffling —=}«—2-DFT —|« DFT merging -
4 . 4 . 4 | 16 |16 12 12 32
5-j-j\2 -2-6j 12 | s | s 20 |20 24
2-6j >\\/ 12 >< 26 | | 41| | 4 20 |20 '"-.HI !;' 16
54j-j\2 246 > -246]] 125 |+ -12 4 4 Hd.f' 0
12 Y 5.2] 55\2 _ 10-2j 10-2j 20 1 20 ;'f""'.ﬁ -8
5-+V2 |/ Y5+57\2 52| | -27\2 - 272 2V2(14)| (1-)M2 -4 f \l -16
-2+6] \ 5-j+i\2 >< S+j-j\2 10427] 1 | [1042f -4j j T4 24
SN2 | 547472 | S++\2 " 202 | Tl 2v 22014 (1402 | | 4 8

Fig. 17 8-point inverse FFT of the FFT in Fig. 16.

This expression is the definition of the length-/N or modulo-N circular con-
volution of the two signals h and x. A fast version 1s obtained by replacing
DFTs by FFTs resulting in:

i
—~

y = hxx = [FFT(FFT(h) - FFT(x)) (69)

If h and x are length-V signals, the computational cost of Eq. (69) is the
cost for three FFTs (i.e.. of x, h. and the inverse FFT) plus the cost of the

N complex multiplications Y (wy,) = H(wp)X(wg). £ = 0,1,..., 1 N — 1.
Thus, the total number of multiplications to implement Eq. (69) is:
1

?l;;\r]Dgz (;\rj + N (?D)

Overlap-Add and Overlap-Save Methods

When the length L of the input signal x 1s infinite or very long, the length
L, = L + M of the output will be infinite and the condition (72) cannot be

satisfied.

A practical approach is to divide the long input into contiguous non-
overlapping blocks of manageable length, say L samples, then filter each
block and piece the output blocks together to obtain the overall output, as
shown in Fig. 18, as discussed in I2SP Ch.4. Thus, processing is carried out

on a block by block basis.

e [——e—— [—»
X = block x block X4 block x5

a Y e :

| > : |
Yo= t M Lﬁimp

Y = L M Hitj"p
h=|M+1 i Vo= L M

i filter i i i

n=0 n=L n=2L n=3L

Fig. 18 Overlap-add block convolution method.

Note that only the next sub-block will be involved if we assume that
2L > L+ M, or, L > M. To get the correct output points, the overlapped
portions must be added together (hence the name, overlap-add).

A fast version of the method can be obtained by performing the convolu-
tions of the input blocks using circular convolution and the FFT by Eq. (69).
The FFT length N must satisty Eq. (72) in order for the output blocks to be
correct. Given a desired power of two for the FFT length N, we determine
the length of the input segments via:

N=L+M = L=N-M (76)

With this choice of N, there would be no wrap-around errors, and the out-
puts of the successive input blocks {Xg, X1, ... }, can be computed by:

Yo = IFFT(FFT(h) - FFT(xo))

Yo
y, =V, = IFFT(FFT(h) - FFT(x;)) 77)
Y, =¥, = IFFT(FFT(h) - FFT(x2))

and so on.

The overlap-save fast convolution method is an alternative method that
also involves partitioning the input into blocks and filtering each block by

Eq. (69). The method is sh

own in Fig. 19.

- N >
X= X0 i M
<« N-M —> X1 : M
<« N-M —» X7 i M
3 N . - N-M —>|
Yo =| M N-M
Y1~ M N-M
A M N-M
X
n I=0 n :j"\I!—M n= 2(}V—M) n:3(1!’\f—M)

Fig. 19 Overlap-save method of fast convolution.

In this method, the input blocks have length equal to the FFT length,
L = N, but they are made to overlap each other by M points, where M is
the filter order. The output blocks will have length L, = L + M = N + M
and therefore, do not satisfy the condition Eq. (72).

It the output blocks are computed via Eq. (69). then the last M points
of each output block will get wrapped around and be added to the first M
output points, ruining them. This is shown in Fig. 20. Assuming N > M,
the remaining output points will be correct.

<« N+M ——

<

!
2
<

M

M N-M

|
Il

-« N ——

Fig. 20 Mod-N reduction of output block ruins first M output samples.

ola function

Last week we discussed the use of the buffer function in conjunction
with the overlap-add and overlap-save methods. The ola function acts
on the output of the buffer function to implement the overlap-add

operation.

The function ola will be needed also in implementing short-time Fourier
transform (STFT) operations, as in project-6.

ola function

o°

ola.m - overlap-add procedure

o°

o°

Usage: y = ola(Y,R)

o°

o°

Y = NxM matrix of columns to be overlap-added by hop-size R
R hop-size, must be 0 < R <= N, R=N (no-overlap)

o o oP
]

\'4 column vector of overlap-added columns

function y = ola(Y,R)

=] ; -~ T
[N, M] size (Y) ; N overlap-add
y= Yo
— * — °
L = R¥(M-1)+N; ~ R > Y1
y = zeros(L,1); hop-size «— R — Y2
« R —+
n= (1:N)'; 5

for m = 0:M-1
y(m*R + n) = y(m*R + n) + Y(:,m+1);
end

STFT O&S — Sect. 10.3 & 10.4

The short-time Fourier transform (STFT) is defined by dividing the input
signal z(n) into successive overlapping length-/V blocks, shifted relative to
each other by 7 samples (the hop size), then windowing each block by an
appropriate length-N window, w(n), and taking the DTFT of each block,

- N window
| H/

X=|_ _——" xg -]

- R -~ _ —— X1 ~—

hopsize W+ R+ _ =7 x5 ~——_|
e R — - X3 - _]

:
DTFT
Xm\ 7 wln
N—1 f,’f-() — /,f-(“}
I | _ . . Y __1‘. | .J_j-'-t-'ﬂ - — & |
X(w,mR) Z z(mR 4+ n)w(n)e N
n=>0 < v .

where i < N and the N time samples within the mth segment being trans-
formed are,

Tm(n)=x(mR+n)w(n). n=0.1,..., N -1

Tm(n)=xz(mR+n)wn), n=0,1,...,] N —1

The discrete-frequency STFT is obtained by replacing the above DTFTs by
N-point DFTs, that is, evaluating them at the N DFT frequencies,
2k

N

Thus, we set, X, = X(wp.mR). for, k = 0.1,....N — 1, and. m =
0,1,..., M, where the total number of segments is M + 1,

E=0,1,....N —1

W =

N-1 N-1
(STFT) | Xppm = Z z(mR + n)w(n)e 9" = T(n) ™79k (1)
n=>0 n=>0

k=01,... N—1, m=01...,M

Given an input signal of length L., thatis, x(n), n = 0.1,..., L, — 1,
the number of segments can be calculated as follows, and then. prior to
calculating the STFT, the signal x(n) can be extended by padding enough
zeros at its end until all frames have length NV,

M = floor [2= en). 0<n<L,—1
It = Tex(n) =4 (2)
LE‘:H — J[B + _"I\'T (] LT i: T E L'EK[—]_

We will assume that this extension has been done and denote the extended
signal by z(n).

STFT can be displayed with a spectrogram plot

o° o O° o O° P O° 0P O° o o° oP o° oP

oP

stftgram.m - STFT spectrogram

[t,£,S] = stftgram(x,R,N, £fs)

X = input signal

R = hop size

N = FFT frame length

fs = sampling rate Ts = 1/£fs

t = m*R*Ts, m=0:M, hop times in sec

f = k*xfs/N, k=0:N/2-1, DFT frequencies in Hz
S = STFT magnitude in dB, make a surf plot
size(S) = size(f) x size(t)

see also the built-in function: spectrogram

O&S - Example 10.10

Spectrogam Example

rCUS(Q?Tflf | %atz) : 0<t< Ty
x(t) = ¢ cos(2mfat) , To <t <21
kCUS(Q?ngI‘-) + cos(2mfut), 215 <t < 3T

Ty = 1000 sec

a = 371073 rad/sec?

fi=1Hz. f,=2Hz. fs =3Hz. f;—4Hz
fo=10Hz, T,=1/f. = 0.1 sec

fs = 10; T = 1/fs;
TO = le3; % time scale, sec
a = 3*pi*le-3; % rads/sec”2

fl1 =1, f£f2 = 2; £3 = 3; f£f4 = 4;
Tl = TO; T2 = 2*TO; T3 = 3*TO0;
x = @(t) cos(2*pi*fl*t + a*t.”2/2) .* (t>=0 & t<=T1l) +

cos (2*pi*f2*t) .* (t>T1 & t<=T2) +
(cos (2*pi*£3*t) + cos(2*pi*fd*t)) .* (t>T2);

R 20; N = 256;
tn = 0:T:T3; xt = x(tn); % sampled signal

[t,£,S] = stftgram(xt,R,N,£fs); % spectrogram

standard display as 2-D intensity plot

figure;

surf (t/T0,£f,S, 'edgecolor', 'none') ; % plot vs. t/TO
axis tight; view(0,90); colormap(jet);

xlabel('t / T 0'); ylabel('f');

xaxis (0,3, 0:3); yaxis (0,5, 0:5);
title('spectrogram') ;

can also be displayed as 3-D surface plot

figure;

surf (t/T0,£f,S, 'edgecolor', 'none') ; % plot vs. t/TO
view(-70, 50); colormap (jet);

xlabel('t / T 0'); ylabel('f');

xaxis (0,3, 0:3); yaxis (0,5, 0:5);

zaxis (-200,0, -200:100:0) ;

title('spectrogram') ;

spectrogram

100 ~

2200 5

spectrogram

The STFT can be visualized as an N x (M + 1)—dimensional matrix whose
columns are the N-point DFTs of the time segments z,,(n),

T 1, (0) 7]
Xirames = [X0, X1, oy Xar], Xy = I'm:(l)

(N = 1)_
X = [DFT(xo). DFT(x), ..., DFT(xy)]

In MATLAB, all the DFTs can be computed with a single FFT call,
X = FFT(Xframes) = [F‘F‘T(\Xn). FFT(x1), ..., FFT{’XM)}

Assembling the overlapping frames mto the frame matrix, Xgmes, can be
done conveniently with the help of the buffer function.

But prior to calling the fft function, each column of Xg,mes must be win-
dowed by the chosen window function w(n) — this operation can also be
done efficiently in MATLAB, as we discuss below.

ISTFT, OLA Reconstruction

The inverse STFT can be obtained by performing the inverse DFT, recon-
structing the mth segment,

, , 1 i o
r(mR+n)w(n) = x,(n) = ~ Z Xpm €’k (3)
k=0
n==0,1 ..., N—1, m=0,1,....M

However, solving for z(mR + n) requires division by w(n), which is typi-
cally very small near its end points, and this would cause the amplification
of even small amounts of noise that might be present.

For this reason, a better reconstruction procedure is by the overlap-add
(OLA) method, that is, aligning the inverse DFTs x,,,(n) according to their
absolute timing, starting at n = mAR for the m segment, and then adding
them up,

y(n) = Z Tn(n —mR)| (ISTFT. OLA reconstruction) (4)

m=—0C

y(n) = Z rm(n—mA)| (ISTFT, OLA reconstruction)

mM=—02

-~ N —
overlap-add

Y= X0
<~ R — X1

hop-size |« R —» X
<« R > X3

The ola function can be used to carry out the
overlap-add reconstruction operation

It can be shown (see O&S). that for most windows and many practical
choices for R, the signal y(n) is equal to x(n) up to a constant factor that
depends on the window and .

But even if such window property, known as the constant-overlap-add
(COLA) property, is not completely valid, one can still reconstruct x(n)
exactly by noting that y(n) is related to z(n). by y(n) = z(n)w(n). where

w(n) 1s the overlapped-added version of the window,

o0

w(n) = Z w(n —mR) (35)

m=—0>2C

Thus, even if w(n) is not constant in n, we can still solve for z(n) by,

y(n) = x(n)w(n) = Z Tm(n —mR) =
Z Tr(n —mR) (6)
0 () I —
Z w(n —mR)
S~ O&S

Sect. 10.3 & 104

Since w(n) is periodic in n with period R, it can be expanded in its R-point
discrete Fourier series,

oo , R-1
1 - 27T
"' / — an(n — R — I)[r 'wr L JWe Tl . Wy =
w(n) m:Z_OC w(n —mR) 7 ; (wy)€ B
(7)

N-1
W(w,) =Y w(n)e ™ =DTFT of w(n) evaluated at w = w,

n=>(0

Thus, the condition for the COLA property is that
Ww,) =0, r=1,2,..., R—1

so that only the » = 0, or w, = 0, term is present in Eq. (7), resulting into
the constant value,

0O&S
Sect. 10.3 & 10.4

X =

y:

N

—

—_—

—

x(}"‘““

window

f— Ra -
analysis hop R, —

—

STFT signal processing system

|-I—Ra—-

—_—

—

—
Yo -
0 —_]

uses different hop sizes R, , Rq
for the analysis and synthesis parts,

performs a modification operation on the
input STFT, generating an output STFT,

from the ISTFT, it reconstructs the output
time signal by overlap-add procedure

window + overlap-add

— Ry —*
synthesis hop — R, —

a—

—

—

—

=

S—
S

—
—_—

<= Rs —

—

-

-_—

—

—

—

e

Y3

The following steps are carried out:

a. The input signal x(n) i1s extended to length, ., = MR, + N, as in
Eq. (2). and the output signal y(n) is initialized to zero over its ex-
tended length. L, = M R, + N.

b. The STFT Xy, of z(n) 1s computed with analysis hop size I,

N-1
X = 3 _ 2(mBy + n)w(n)e ="
n=>0
O<E<N-1, 0<m<M

(8)

c. Next, Xy, ,,, 1s modified according to some transformation, such as fil-
tering, gain control, or phase modification as in the phase vocoder,
resulting in an output STFT, say, Y} ,,.

d. Then, the inverse STFT of Y} ,,, 1s computed, and each segment is win-
dowed by another length-N window, which is usually the same as the
analysis window w(n).

=

1
Yim AUk 0<n<N-—-1 (9)
0

1
N

Ym(n) = w(n) -

x~
I

e. The resulting windowed segments are overlapped-added with the syn-
thesis hop I to obtain the synthesized transformed output y(7n),

o0

y(n) = Z Um(n —mRy) (10)

m=—0oC

Computation

The STFT can be computed efficiently in MATLAB with a single FFT as
follows. Assuming that z(n) has been extended to length, L, = M R, + N,
then with the help of the built-in MATLAB function buffer, the signal = (n)
can be rearranged into an N x (M + 1) matrix whose columns are the time
frames, Nfames = [XD VXL . XM}, 1.€.. Xfames(72,m) = T (n2).

Then, the N-point FFT of that matrix will generate, after windowing, the
FFTs of all the columns, resulting in the STFT matrix X,

NXfames = buffer (X* N, N—-R,. 'nodelay ’)
W = repmat (w. 1. M + 1) = window (STET) (11)
.)f = fft (I'I‘{*’}{ﬁameﬁ. _L\T)

where w 1s the N-dimensional column vector of the chosen window.

w(0) T
w(l)
w= | w(2) = W= [w. W, ..., w]
M + 1 columns
L w(N —1)]

and W is its replication into an N x (M + 1) matrix so that it can be multi-
plied point-wise by Xfames.

Once X is computed, it may be subjected to a transformation resulting in the
output STFT matrix Y, which also has dimension N x (M + 1). Its inverse
can be carried out by a single IFFT call, resulting in the output matrix of
time-frames,

Yeames = ifft(}”'. N)

ISTFT) (12
U (1) = Yames(72, m) = nth element of mth column (') (12)

The ISTFT overlap-add operation of Eq. (4) may be implemented efficiently
by the following iteration that reconstructs y(n) segment-by-segment while
windowing,

form=0.1.2,....M
forn=0,1,.... N —1 (OLA reconstruction)
y(mRs +n) =y(mBRs+n) + ym(n)w(n)

(13)
where the n-loop can be vectorized and we must initialize y(n) to zero, that
s, y(n)=0,forn=0,1,..., Ly —1,where, Ly = MR, + N.

For example, see the following MATLAB code segment into which the win-
dowing operation has been added, with the column vector w representing the
N-dimensional window,

% define R, and, extract N,M from Y,

% define w = length-N column vector of window samples
N = size(Y,1);
M = size(Y,2) - 1; % Y is Nx(M+1)
L = R*M + N: % length of output v(n)
v = zeros(L,1l); % pre-allocate
n = (1:N)"'; % column-vector
for m = 0:M
v(im*R + n) = y(m*R + n) + w.*Y(:,m+1);

end

see included references in project-6

Phase Vocoder

The phase vocoder is an example of an STFT signal processing system,
realized by Eqs. (11)—(13).

Its main use 1s to “replay” a signal, such as an audio recording, faster or
slower without changing its frequency content. As for example, in playing
the same piano piece more slowly, or singing a song faster without altering
its frequencies.

We state the algorithm below. and later provide a justification. Several
review papers are included as part of project-6.

The transformation step, Xy, ,,, — Y . to be carried out between Eqs. (11)
and (12) 1s, in 1ts simplest form, a modification of the phase of Xy, ,,,, while
preserving its magnitude. We have in polar form,

X = | Xim| @75
’ 3k (14)
— e L1

kom —

.
fc,ml

where the magnitudes are preserved,

}c,ml — |}fk,m| (15)

and the output phases ¥, ,,, are computed recursively from the input phases
Dy m. as follows, where the A-loop may be vectorized,

for k=0,1,.... N —1,

2mk
Vo = Pr.o

form=1.2..... M.

Wi =

(16)

ﬂ':*—f"fczm — 75 {f’kzm - @kzm—l — R wi
Ra mod 27

Wek,m — Wk + "jwk,m

ll-?k__»,-n — g’}fcz-m—l + RSL‘JL‘:?”

(phase modification)

The notation. [;r} o

stands for the phase unwrapping of the angle = modulo 27, that is, adding to,
or subtracting from, = enough multiples of 27 until it lies in the symmetric
Nyquist interval, —7 < = < 7.

[t can be implemented easily by the following vectorized anonymous
MATLAB function, mod2pi(z).

mod2pi = @(x) mod(x+pi, 2+pi) - pi;

In summary, the complete phase vocoder algorithm is described by Egs. (11),
(15).(16), (12). and (13), in that order.

Time-Scale Modification

By choosing different hop sizes R,. F,, the duration of the output signal
y(n) can be made longer or shorter than that of the input z(n), depending
on whether Ry > R, or Ry < R,. respectively.

The purpose of the phase modification equations (15) and (16) 1s to pre-

serve the frequency content of the signal under such change in duration. We
may define the speed-up factor by,

R,
= o (speed-up factor)
- (17)
I R . .
— = o (time-stretching factor)
, .

so that Ry = R, /r, and r > 1 corresponds to a faster rendition (i.e. shorter
duration) of the signal, and » < 1, slower rendition (i.e., longer duration).
[f we specify F,, r, then we may calculate R, by rounding,

R, = round (&)
,

or conversely, as 1s preferred in practice, if we specify, R, r, then,

R, = round(r R)

Phase Vocoder Model

Here, we provide a simplified justification of the phase vocoder algorithm.
Given a sinusoidal signal of varying amplitude and varying phase,

z(t) = A(t)e??®
the instantaneous analog frequency is defined as the derivative of the phase:

Q(t) = d(t)

Considering the signal values at two nearby time instants. ¢ and ¢ + At. we
may expand the phase to first-order in Af and approximate the phase and
the instantaneous frequency as,

D(t + At) = B(t) + D(t) At = D(t) + 2(t) At
(18)
Qt+ At) = ()

The phase vocoder is based on the implicit assumption that the signal is a
sum of such sinusoidal terms with varying amplitudes and phases,

Z A; () PO u(t) = By(t) (19)

The main objective is to ensure that the instantaneous frequencies contained
in the signal are preserved in going from the overlapped analysis frames at
hop size R, to the overlapped synthesis frames at hop size F,. Ideally, the
STFTs of the input and output frames would be:

N-1
Xeym = Z r(mR, +n)w(n)e I<"

n=>0
N-1

Yim = Z z(mRs 4+ n)w(n)e I«"
n=>0

where wy, are the DFT frequencies,

2k
N

E=0,1,..., N -1

u"l..‘ii' j—

and, we assumed that the signal x(#) was sampled at a rate f; = 1/7'. so
that the time intervals that correspond to the length-N window of the mth
frame are as follows, for the analysis and synthesis cases,

t2 =mR, T +nT =1t% +nT (analysis)
t: =mRT +nT =1t +nT (synthesis)

where, ¢ = mR,T. and, tJ = mR/T, are the beginning times of the
mth segments. It follows that the sampled signal for the analysis frames,
x(mRs + n), would be according to Eq. (19),

z(ty, +nT) Z Ayt + nT) d®iltm+nT)

Assuming a small enough sampling interval 7', we may expand the signal
phases using the approximation of Eq. (18). Assuming also that the signal
amplitudes vary slowly across each windowed frame, we obtain the follow-
ing approximations. over the length- N window of the mth frame.

Ai(t8 +nT)~ A;(t:), 0<n<N-—-1
D;(ty, +nT) = @,(ty,) + (nT)((t;,)

Defining the digital instantaneous frequencies in [rads/sample],

wi(ts) = 2(te)T e OT —

then, the phase approximations can be written as,
D (8 +nT) = D;(t8) + nw; (L)
so that the signal can be approximated as follows within the mth frame,

2(t8 +nT) ~ Z jiliufn)E,jdf‘i[t?n}—i-j-nwi[t%) (20)

Inserting Eq. (20) into the analysis STFT, we have,

ijg m — ;1?('}’]’1_3& _|_ '?1-) T-‘:?(?’?) E—jwkn

— Z Z *’il-i(ffn) t-.,jdii(tglj—i_j?lw{(tgl} 'H.-’('?l-) g_jwk'n

N-1

_ Z Ai(tfn)e;ﬁ@i(fﬁl} Z pinwilty,) ,—jnwy w(n)
i

n=0

where the summation over n 1s recognized to be the frequency-shifted DTFT
of the window w(n),

N-1

Wi(w) = Z e~ 9"y (n) = DTFT of w(n)
n=>0

. N-1

TIr (U«’k — W (ffn)) — Z Ejﬂwi(t?n}e—jﬂwk 'U_-‘(ﬂ.)

n=>0

Because we always assume that the window w(n) is real-valued and sym-
metric abouts its middle, it follows that its DTFT can be factored into a

real and even function of w, and a phase part corresponding to a delay by
(N —1)/2 samples,

W(w) = W(w)e *W=D/2 W (y) = W(—w) = real-valued

for example, we recall the rectangular window case,

s sin(WN/2) 1y
Wiw) = — -
sin(w/2)

it follows that the STFT of the analysis frames will be,

N = 3 Ag(t,) 7T W (i (18,) — wy,) e @iltm) =) (N=072 21

For large N. the function W (w) is highly concentrated about w = 0, and
therefore, only that sinusoidal term ¢ whose instantaneous frequency w; (%%)
falls within the &£th DFT bin will effectively contribute to the above sum,
that 1s, we can keep approximately only the i = £ term,

}{k!m ~ Ak(til)eﬁ’k(fﬁl} W (‘*’*‘1:‘9“?}1) _ w,k) Ej[wk (th,) —wi)(N—1)/2 (22)

In this expression, the frequency wy (%) is not equal to wy, but it is nearby,
1.e., we can introduce a deviation from wy to be determined,

wi(ty,) = wr + Awiem (23)
In order to obtain the phase of the STFT, that s,

Xieom = | Xim| eI Pk,m
we observe that Eq. (22) is separated into real factors and phases, so that,

{pfg,m — dﬁk(f?n) + (wk(f?n) o wk) (‘\T B 1)/2 (24)

Our objective, eventually, is to determine the instantaneous frequecies, wy (72),
from the computed STFT phases @, ,,,. To do so, we consider how these
phases change from frame to frame, 1.e., from time = (m—1)R,T,
to time, t& = mR, 1. But since, we have,

'-'ml

tfn ?n 1 + R A
we may use the approximate expansion of Eq. (18) to write,

D (%) = D (%, + R, T) = Dyt) + RaT 2 (t%) . or,

fﬁk(fil) ~ dﬁk(f?n—l) + Rawk(til)

and also from Eq. (18). we have approximately, wy (%, _,) = wg(t?). so that,
Dpe o = Pre(t) + (wi(ts,) — wi) (N —1)/2
= Dp(ty,_1) + Racnr(ts,) + (wi(th,) — wr) (N = 1)/2
= B (t8,_1) + (wr(t_y) — wi) (N = 1)/2 + Rywi(t2,)
= Oy m—1 + Rawi(ty,), or
Piemn = Prem—1 + Rowi (L7,

{pk,m — (ﬁk,m—l + Ra (':J-"k + ﬂwk,m)

thus.

(ﬁfc,m — 'gpkz-m—l + Ra (wfc + ﬂwhm)
(25)
Ra ﬂwk,m — "ﬁkim — gpk,m—l + Rawk

In a similar fashion, we can show that the synthesis STFTs,

-

ko — I}f}czm | ijk:m

will satisty similar recursions which will ensure that the instantaneous fre-
quencies are preserved:

lﬁk,m —]-‘pk,-m—l + RS (wfg + ﬂwk,m) (26)

Therefore, if we can solve Eq. (25) for Awy, ,,,. we can reconstruct the output
STFTs recursively. To solve for, Awy, .. We note that in the equation,

Ra iwkzm — {pk,m - (ﬁkzm—l + Ra Wik

the right-hand side, being a phase, is defined up to a multiple of 27. Thus,
phase-unwrapping it mod-27 to fall within the standard Nyquist interval
[—m, 7], we obtain,

Ra ﬂwkm — [(ﬁkzm - (ﬁk,m—l T Rawk}

mod2

thus.,

1

i (27)

’ {{ﬁk,m - (ﬁkzm—l — Ba.wk

ﬂwk m —]
" mod 27

To summarize, we start by carrying out an analysis STET with hop-size F,,,

Xion = | Xpm| e/ T5m

then, we construct the synthesis STFTS, Y, ,,,. with hop-size 17, by preserv-

ing their magnitudes,

}/}c,ml — |)fk._m|

and constructing their phases, ¥ ,, recursively by the phase-modification

algorithm of Eq. (16).

for k=0,1,....N —1,

2k
Vo= Pro

for m=1.2...., M,

Wy, =

R,
lﬁk,m — @rfﬂ;'m—l + RS (wk + ﬂi’dk__m)

ﬂ':*—f"fczm — 7 (ﬁkzm — @}’c:m—l — Ra.':"-f"k

mod 27

(28)

Pitch-Scale Modification

Pitch shifting refers to scaling all frequencies by a factor r, that 1s, replacing,
f — rf, without altering the duration of the signal, as for example in play-
Ing a piano piece an octave higher. This is not the same as frequency trans-
lation in which all frequencies are shifted by a fixed amount, f — f + fo.

If you have an audio signal x(n) recorded at a sampling rate f, and you
replay it a rate that is r times faster, f. = r f, then both the duration and
the pitch will be altered, with the duration becoming » times shorter, and the
pitch becoming r times higher—this is known as the “chipmunk™ effect.

In order to perform pitch shifting without changing the duration of the
signal, we may combine a phase vocoder time-scale modification with a
resampling operation. In other words, we may “chipmunk™ the signal and
then correct its duration with a phase vocoder.

For example, suppose r > 1, and we resample =(n) at the rate f,/r, and
play it back at f,/r, then it would sound like the original, but if we play it
back at fy = r - fi/r, then it would have a pitch r times higher but it will
also have r times shorter duration.

Thus, if we follow this operation with a phase vocoder with a time-
stretching factor 7, or equivalently, speed-up factor 1/, we would restore
the original duration, while not affecting the already pitch-shifted frequen-
cies.

Alternatively, we may reverse these operations. First we apply a phase
vocoder with speed-up factor of 1/r. Now the signal will have r times
longer duration, but its pitch will not have shifted if played at rate f;.

[f we now resample this at the rate f,/r and played it a rate f, /., it would
sound the same as that longer version, but if we play it back at f, = r- f/r,
it will be pitch-shifted by a factor of r, and its duration will be scaled down
by a factor of r to the original duration.

The two alternative approaches are depicted below, where it 1s advanta-
geous to apply the top version when r > 1, and the bottom, when r < 1.

resample phase vocoder
X(n) — e i - t?%ece_c;;sgczh Ej:.. . y(n)

phase vocoder
x(n) —— speed-up = 1/r
time-stretch = r

resample

at rate = f;/r y(n)

Fig. 2 Pitch shifting by a factor of r.

pitch-shifting example

original at rate .F; resampled at rate .F;r r=2
1 1r
i L |||“Hh| |“Hh| ||||||‘H“‘|
-1 . .) -1F)]
0 1 2 3 4 a 1 2 3
i |msec) t Im:-n:-c'
resampled at ,I';_."r. replayed at .I';_ phase vocoder, time-streched by factor r=2
1 T T T] 1_
] i
_1 1 1 1 _1- 1 1 1
0 1 2 3 4 a 1 2 a

original spectrum spectrogram, ongingl signal
e o)

| (Haz)

i i ; “évg“.,u Pl 92 MAPOR Jig)1 AV YREORDN |
800 1200 1600 0 { 2 3
f (Hz) t (sec)
pitch-shifted spectrum, r=2 spectrogram, pitch-shified, r=2

] (Ho)

0... . e e e e nene é
0 H EL i
0 400 800 1200
f (Hz) t (see)
pitch-shifted spectrum, r =12 spectrogram, pich-shifted. r= 112

| (Ha)

t (sec)

3d octave =|= 4th octave

Gt D# F# G# A# C# D# F# G# A#
Db Eb Gb Ab Bb Db Eb Gb Ab Bb

12

0 2 415 74 S E210p8!
B/|CID|E|F|/G|AB|C|D | E|F|G|A|B
! /o]
G4

A3 A4
middle C is 3/12 of an 220 Hz 392 Hz 440 Hz
octave above A3, or, middle C
9/12 octaves below A4 261.63 Hz

261.63=220-212=440. 27"

4t octave keys, k=0:12, MATLAB index = k+1=1:13
major keys are a subsetof k, m=[0,2,4,5,7,9, 11, 12]

o°

stftgram.m - STFT spectrogram

o°

o°

[t,£,S] = stftgram(x,R,N, £fs)

%

% X = input signal

% R = hop size

% N = FFT frame length

% fs = sampling rate

%

$ £t = m*R*Ts, m=0:M, hop times in sec

$ £ = k*fs/N, k=0:N/2-1, non-negative DFT frequencies in Hz

oP

S = STFT magnitude in dB, if nargout==0, make a surf plot

function [t,f,S] = stftgram(x,R,N, £fs)

X = stft(x,R,N)."';
M = size(X,2)-1;

k = 0:N/2-1; £ = k*fs/N; t = (0:M)*R/fs;
Xmag = abs(X(k+1,:)); S = 20*1ogl0 (Xmag/max (max (Xmag))) ;

if nargout==0

surf (t,£f,S, 'edgecolor', 'none’) ;

axis tight; view(0,90); colormap(jet);

xlabel ('{\itt} (sec)'); ylabel('{\itf} (Hz)');
end

Ra = 256; % input hop-size
N = 2048; % FFT frame length

[x,FS] = audioread('flute2.wav'); x = x(:,1)."'

r 2;

y = pitchmod(x,r,Ra, N); % pitch-shifted signal
soundsc([x, zeros(1l,FS), y], FS);, % play sounds
figure; stftgram(x,Ra,N,FS);

xaxis(0,3,0:3); vyaxis(0,1800, 0:400:1800) ;
title('spectrogram, original signal')

Rs = round(Ra/r); % output hop-size
figure; stftgram(y,Rs,N,FS);

xaxis(0,3,0:3); vyaxis(0,1800, 0:400:1800) ;
title ('spectrogram, pitch-shifted, {\itr} = 2')

resampling example

|
]
=
o
o°

total duration, sec
sampling interval Ts = 0.5 sec

o°

fs = 2; Ts = 1/fs;

p=2; g=1; % resampling factor L = p/q

% p=1; g=2;

L=p/q; fpg = L*fs; Tpq = Ts/L; % Tpq = 0.25 sec

t =0:Ts:T; % t sampled at fs

tpqg = 0:Tpqg:T; % t sampled at fpgqg = fs * p/q
a = 2*pi/50; % a = chirp parameter

x = sin(a/2 * t.*2);
Xxpq = sin(a/2 * tpq.”2);

o°

sampled at fs
sampled at fpqg

o°

figure; stems(t,x,'b’);
title('rate ({\itf s}');

figure; stems (tpq,xpq,'r');

title('rate {\itLf s}, ({\itL = p/q}');

y = resample (x,p,q) ; Sllght diﬁerences due
ty = (0:1length(y)-1) *Tpqg; > to the internal FIR
figure:; stems(ty,y,'b'): filtering in resample

title('rate {\itLf s}, ({\itL = p/q}’);

0.5

rate Lf , L=p/q

5

10

0.5

7 8 9 10

rate Lf , L=p/q

