
DSA – Feb. 22, 2021

Topics: DTFT, spectral analysis, windowing vs. resolution tradeoffs, power

spectrum estimation, sample autocorrelation, periodogram, periodogram averaging

and smoothing, window types: rectangular, Hamming, Kaiser, DPSS, Chebyshev.

DTFT

frequency resolution and windowing

I2SP – Ch.9

O&S – Ch.10

see project-4

for the more accurate

3-dB width

one sinusoid two sinusoids

Hamming window

Hamming window

Hamming window

Kaiser window for spectral analysis

Kaiser window for spectral analysis

Kaiser window for spectral analysis

Power Spectrum Estimation

periodogram improvement methods

Random Signal Concepts

Random Signal Concepts

Random Signal Concepts

Sample Autocorrelation

Sample Autocorrelation

Periodogram and Its Improvements

Periodogram and Its Improvements

Periodogram and Its Improvements

Periodogram and Its Improvements

Filtering of Random Signals

Filtering of Random Signals

Filtering of Random Signals

further notes on windows and project 4

1. Rectangular

2. Hamming

3. Kaiser

4. DPSS

5. Chebyshev

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

further notes on windows and project 4

in project-4, two periodogram averaging methods

are considered:

a) dividing into non-overlapping blocks, D = N

b) Welch method, 50% overlapping, D = N/2

both cases can be implemented conveniently with

the help of the built-in function buffer

its usage is explained with some examples below

further notes on windows and project 4

x = 10:2:46; N = 6;

% x =

% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

X = buffer(x,N) % non-overlapping, incomplete blocks

% X =

% 10 22 34 46

% 12 24 36 0

% 14 26 38 0

% 16 28 40 0

% 18 30 42 0

% 20 32 44 0

further notes on windows and project 4

x = 10:2:46; N = 6;

% x =

% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

[X,~] = buffer(x,N) % non-overlapping, complete blocks

% X =

% 10 22 34

% 12 24 36

% 14 26 38

% 16 28 40

% 18 30 42

% 20 32 44

further notes on windows and project 4

x = 10:2:46; N = 6;

% x =

% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

X = buffer(x,N,N/2) % 50% overlapping, delayed by N/2

% X =

% 0 10 16 22 28 34 40

% 0 12 18 24 30 36 42

% 0 14 20 26 32 38 44

% 10 16 22 28 34 40 46

% 12 18 24 30 36 42 0

% 14 20 26 32 38 44 0

further notes on windows and project 4

x = 10:2:46; N = 6;

% x =

% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

X = buffer(x,N,N/2,'nodelay') % 50% overlapping, no-delay

% X =

% 10 16 22 28 34 40

% 12 18 24 30 36 42

% 14 20 26 32 38 44

% 16 22 28 34 40 46

% 18 24 30 36 42 0

% 20 26 32 38 44 0

further notes on windows and project 4

x = 10:2:46; N = 6;

% x =

% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

[X,~] = buffer(x,N,N/2,'nodelay') % no-delay complete blocks

% X =

% 10 16 22 28 34

% 12 18 24 30 36

% 14 20 26 32 38

% 16 22 28 34 40

% 18 24 30 36 42

% 20 26 32 38 44

