DSA - April 5 & April 12, 2021

Topics: Adaptive filtering and prediction, correlation canceling and optimum
estimation, decorrelated bases, correlation canceler loop, LMS algorithm, gradient
descent, learning speed, eigenvalue spread, accelerated LMS, Newton’s iterative
method, RLS algorithm, adaptive filtering applications, adaptive linear prediction.

Neural networks, activation functions, LMS and backpropagation, NN examples,
XOR problem, NN prediction of sunspot and airline data.

e(n) = s(n) +vy(n) — v (n)

Signa] 77777777 7‘ X(I’l) = S(I’l) + Vl(l’l) +
source / i =
q&&{//q }
ey |
noise | Y1) = vy(n) _| adaptive i
source : filter A A i
noise reference / x(n) = v{(n)
|
|

N ——————

LMS, RLS algorithm

Optimum Estimation — Wiener Filters

AOSP
Ch.1

Correlation Canceling and Optimum Estimation

The concept of correlation canceling plays a central role in the development
of many optimum signal processing algorithms, because a correlation can-
celer is also the optimum linear processor for estimating one signal from
another.

Consider two zero-mean random vectors X and y of dimensions N and
M, respectively. If x and y are correlated with each other in the sense that
R,, = E[xy’] # 0, then we may remove such correlations by means of a
linear transformation of the form

e=x—Hy

where the NV x M matrix H must be suitably chosen such that the new pair
of vectors e,y are no longer correlated with each other, that is, we require

Rey = Eley’] =0
Using this condition, we obtain

Rey = E[E}’T] = E[(X - H}’)}’T} — E[X}’T] - HE[Y}"T] = Ryy — HRy,

Then, the condition F., = 0 immediately implies that

H = Ryl = Exy'|Elyy'|™

Using ., = 0. the covariance matrix of the resulting vector e is easily
found to be

R.. = Elee'] = Ele(x” —y" H)]
= Ry — ReyH' = R., = E[(x — Hy)x"], or,
Ree — Bs:a: - HRy;L — B:r:r - Rs:yR;yIRyr

The vector.

x=Hy = R, Ry = Elxy'|Elyy'] "y

A

obtained by linearly processing the vector y by the matrix H is called the
linear regression, or orthogonal projection, of X on the vector y. In a sense
to be made precise later, x also represents the best “copy,” or estimate. of x
that can be made on the basis of the vectory. Thus.,.e = x — Hy =X — X
may be thought of as the estimation error.

Actually, it is better to think of X = Hy not as an estimate of x but rather
as an estimate of that part of X which is correlated with y. Indeed. suppose
that x consists of two parts

X =X1 +X9

such that x4 is correlated with y. but x5 1s not, that is, ,,, = Elxqy!] = 0.
Then,

Rmy - E[XFT] - E[(Xl + XQ)FT} — R:riy + Rfczy - Rﬂ"iy

and therefore,
= R, Byyy RS o y} = X

The vectore = X — X = X; + X9 — X; = (X; — X{) + X9 consists of
the estimation error (x; — X;) of the x-part plus the x,-part. Both of these
terms are separately uncorrelated from y. These operations are summarized
in block diagram form below.

+ T N iy
X r{n’i »e=x-X=(x-X|)+x
y—— H A A

xX=x,=Hy

Y+
T
L

e=x-x=(x;-X)+x

p
y

y—m H

)
X =

-

The most important feature of this arrangement is the correlation can-
cellation property which may be summarized as follows: If x has a part x4
which is correlated with y, then this part will tend to be canceled as much
as possible from the output e. The linear processor A accomplishes this by
converting y into the best possible copy x; of X1 and then proceeds to cancel
it from the output. The output vector e 1s no longer correlated with y. The
part X9 of x which 1s uncorrelated with y remains entirely unaffected. It
cannot be estimated in terms of y.

The correlation canceler may also be thought of as an opfimal signal
separator. Indeed. the output of the processor H is essentially the x; com-
ponent of x, whereas the output e is essentially the xo component. The
separation of X into x; and X 1s optimal in the sense that the x; component
of x 1s removed as much as possible from e.

Next, we discuss the best linear estimator property of the correlation can-

celer. The choice H = RTyR;yl, which guarantees correlation cancellation,

1s also the choice that gives the best estimate of X as a linear function of
y in the form x = Hy. It is the best estimate in the sense that it produces
the lowest mean-square estimation error. To see this. express the covariance
matrix of the estimation error in terms of /. as follows:

R.. = Elee'] = B[(x — Hy)(x" —y"H")]
= E[xx’] — HE[yx'] — Elxy'|H" + HE[yy"|H"
=R,, — HR,, — R,,H" + HR,, H"
Minimizing this expression with respect to H yields the optimum choice:
Hop = Ryy R,
X = Hyyy = R, Ry

vy)

with the minimum value for R.. given by:

RE" = Rag — Roy By Ry = Elxy* | E[yy'| ™'y

Any other value will result in a larger value for F... An alternative way (o
see this 1s to consider a deviation AH of H from its optimal value, that is,
replace H by

H = Hoy + AH = R, R, | + AH

Then R.. may be expressed in terms of AH as follows:
Ree = R™ 4+ (AH) Ry, (AH)"

Since R, 1s positive definite, the second term always represents a non-
negative contribution above the minimum value R™", so that (R.. — R™")
1S positive semi-definite.

In summary, there are three useful ways to think of the correlation canceler:

[. Optimal estimator of X fromy.
2. Optimal canceler of that part of X which is correlated with y.
3. Optimal signal separator

The point of view is determined by the application. The first view is
typified by Kalman filtering, channel equalization, and linear prediction ap-
plications. The second view is taken in echo canceling, noise canceling, and
sidelobe canceling applications. The third view is useful in the adaptive line
enhancer, which 1s a method of adaptively separating a signal into its broad-
band and narrowband components. All of these applications are considered
later on.

A\
X + e=x—2Xx
:A: .
y
observations

h
A

design criterion
E[e?]= min

Special Scalar Case

The above results, apply equally well to the case when x is a single scalar
random variable, z, to be estimated from the vector of observations y. In
this case, we define

h! = H = Elzy']Elyy']™" = row vector

h = Elyy’]™' E[zy] = column vector

h = R~ 'r = optimum weights, Wiener solution
R = E[yy’] = autocorrelation matrix

r = E|xry| = cross-correlation vector

and obtain the optimum estimate and estimation error,

v =hTy = Elzy" | Elyy"]y

E:;E—;f‘.:;:c—hTy

and the orthogonality and normal equations,
Eley] =0 (orthogonality equations)

Elyy'Th = E[zy], or. Rh =r (normal equations)

Performance index,

El(z—h"y)’] = B[2* = 22(h"y) + (h"y)(h"y)]
= Ela* —2h" (zy) + (h"y)(y"h)]

E[z*] = 2h"r + h’ Rh = min

(z—hly) =y

2 € — -
“h oh 0h

0E e e 0
- — _.E
Jh [}

)
% = 2FEfey]=2(Rh—r)=0 = Rh=r = h=R""r
C
gradient descent algorithm) quadratic performance index
A
Ah = —p i)?{h)
dh ._
E(h+ Ah) ~ E(h) + Ah.- ‘)‘?(h')
oh E(h+Ah)
e oEMR))?
E(h+ Ah)=E&E(h) —pu ah A — R B |
E(h+ Ah) < E(h) | | |
h h+Ah hy=R'r

Notation change to M+1 observations and weights,

_ h.n -
h‘l

_ ha i

i =h"y = [ho. hy

Yo
"

LY

M
= E hiy;
i=0

R=Elyy'] = (M+1) x (M+1) matrix

r = Elry] = (M+1) x 1 column vector

with matrix elements.

r; = Elry],

i j=0,1,....M

i=0,1,....1 M

For time-series applications and spatial arrays, the weights and observation
vectors are defined at times instant n, as follows,

o
hl
h —
e
delay line
i UYn i -yﬂ(ﬂ))
Yn—1 . . y1(n) .

y(n)= , = time series. y(n) = , = spatial arrays

| Yn—M _ |y (n)

array elements

and the estimate at time n.

AQOSP

: : : :) Ch.16
time-series — adaptive Wiener filter
+
Xn €n
A Z
Vn ?
optimum linear combiner
delay line

AQOSP

spatial arrays — adaptive antennas

Ch.16

desired signal main antenna

—~ -0

Yo(n) ‘ ho(n)
AA'

o y1(n)
jammers %'
£ y) _p I

secondary array elements

optimum linear combiner

Other Optimum Estimators

The estimate, # = h'y. is the optimum linear mean-square estimate of .
in the sense that it it minimizes the mean-square estimation error,

£ = Ele?] = min

under the assumption that = is a linear function of the observations.
There are other estimation criteria that result in estimators, z(y) that
may be nonlinear functions of y. Such criteria make use of the joint density
p(x,y) of the random variables = and y, and the corresponding conditional
densities.

p(x,y) = joint of density of z and y

p(x|y) = conditional density of = given'y

p(y|z) = conditional density of y given x
p(x) = a priori density of

p(y) = joint of a priori density of y

From Bayes’ rule. we have the relationships,

plx,y) = plz|y)plz) = ply|z) p(z)

The alternative estimators are:

I. Maximum a posteriori (MAP) estimate. Finds the x that maximizes
the a posteriori conditional density,

plaly) = max

2. Maximum likelihood (ML) estimate. Finds the x that maximizes the
conditional density,
plylz) = max

3. Unconstrained mean-square (MS) estimate: Finds the z(y) that mini-
mizes the mean-square error without assuming linear dependence,

Ele*] = E[(z — T(}))g] = min

[ts solution 1s the conditional mean relative to the a posteriori condi-
tional density, p(x|y),

i(y) = Elely) = [eplaly)ds

(8 o]

AOSP
Ch.16

Ideally. the MAP estimate would be the best, in the sense that it finds the
most likely = given that a particular realization of y has been observed.
However, it is in general difficult to solve because we may not know the
conditional density p(xy). For the same reason, the MS estimate is also
difficult to obtain.

The ML estimate is generally easier to obtain, but it is a bit questionable
because, in maximizing p(y|z), it finds that = that renders the observed
vector y the most likely to have been observed.

Theorem: For zero-mean. jointly gaussian, random variables .y, the
MS. the MAP, and the linear MS estimates are the same.

Observation Bases

The linear mean-square estimate,
r=h"y = Eley"|Elyy']y

1s basis-independent, in the sense that if we define a new vector of observa-
tions z as an arbitrary linear combination of the original basis,
y=Bz = z=DBY

-

where B is an arbitrary but invertible (M+1) x (M+1) matrix, then the
optimum estimate remains invariant under such base change, that is,

v = Elzy'|Elyy']y = Elzz' | E[z2"]| 'z
defining the weights with respect to the new basis,
g = Flzz!' |7 E[rz]

we have,

Proof:

y = Bz

Elyy']| = E[(Bz)(Bz)"| = BE[zz"]| B"

Elyy"]™' = BTE[z27]"' B~

Elzy| = E|z(Bz)| = BE[z1]

Elzy!] = E[zz"] BT

Elzy'|Elyy'7'y = Elzz"|B"B~"E[zz"|7'B~'Bz

Elzy'|Elyy' 'y = E[zz? | E[zz"]| 'z

h = Elyy' |7 'Elzy] = B Ezz"|"'B™'BE[zz] = B g

g = B'h

realizations

X _|_ e=X—
i
i
|
y |
observations & N T i
i x=hy
| |
| |
3 i
|
design criterion | |
E[e?]= min
X e=X —
<
Y
observations

can be implemented adaptively ——

.
R Y

E[e?]= min

Decorrelated Bases

The best basis would have a diagonal autocorrelation matrix. Let us denote
such basis by the (M +1)-dimensional column vector, €, chosen such that,

Oh "By 0 e 07
€ = E:1 . D= FElee'] = (:J b?l [;] — diagonal

eur_ 0 0 - B
E;,=E[], i=0,1.....] V[
D;; = Elee;l = E;d;. 1,5=0.1,...,M | decorrelated components

i = Eley'|Elyy"] ™'y = E[z€e’|Elee’] e

T

diagonal matrix inversion

Thus. R = Elyy?]. is factored with a positive-definite diagonal D.
R=BDB"
There are two ways to achieve this:

I. Eigenvalue decomposition of /. Leads to Karhunen-Loeve
transform and principal component analysis. which becomes
practical via the SVD. In this case, the matrix B 1s the eigen-
vector matrix of /7. See AOSP-Ch.15.

)

2. Gram-Schmidt orthogonalization of the random variables y.
Leads to lattice adaptive filters, which are computationally
efficient and exhibit very fast convergence. In this case, B
1s a lower-triangular matrix and corresponds to the Cholesky
factorization of ?. See AOSP-Ch.l & 16.

We may think of the basis transformation as a signal model for y. being
synthesized from a decorrelated random vector, €, that is, with, A = B~

€

o

B+—y = Be (synthesis)

=

y Al— e = Ay (analysis)

Adaptive Implementation of Wiener Filters

AOSP
Ch.16

A Wiener filter and its adaptive implementation are shown below The filter
processes the observation signal v, to make an estimate x,, of the primary
T,, and the resulting error output ¢, 1s fed back into an adaptation algorithm,
such as the LMS or RLS, that changes the filter weights to be used at the
next time instant.

Xn + T en=Xp—Xn Xn +7 €n=Xp —Xn
T AN
3 I ;‘l F s :
Vn Wiener i Vn adaptive i
filter 3}” i filter -;En |
! | |
design criterion |, | | adaptation | |
Ele2] = min algorithm
where, for an order- M FIR Wiener filter, the estimate 7, 1s,
M -yn |
: Un—1
- T T
Ty = E hiyn_i = [ho, h1. har) | =h'y(n)
i=(0 '
| Yn—DM

adaptive Wiener filter

optimum linear combiner

delay line

There are three basic issues in any adaptive implementation:

[. The learning or convergence speed of the algorithm.

2. The computational complexity of the algorithm.

3. The numerical accuracy and stability of the algorithm.

The convergence speed is an important factor because it determines the
maximum rate of change of the input non-stationarities that can be usefully
tracked by the filter. The computational complexity refers to the number
of operations required to update the filter from one time instant to the next.
The table below shows how various adaptive algorithms fare under these

requirements.
algorithm | speed complexity stability
LMS slow | simple, O(2M) | stable
RLS fast | complex, O(M?) | stable
Fast RLS | fast | simple, O(7M) | unstable
Lattice | fast | simple, O(16M) | stable

Only adaptive lattice algorithms satisfy all three requirements.

For stationary, zero-mean, input signals x,,, y,, the optimum Wiener filter
coefficients h are given in terms of the stationary (M+1)x(M+1) au-
tocorrelation matrix /2 of the data vector y(n) and the (M-+1)x1 cross-
correlation vector r between z,, and y(n), that is,

R = E[y(n)y'(n)]
r=FE|z,y(n)]

We note that 7 is an (M + 1) x (M 4+ 1) symmetric and positive-definite
matrix, and r is an (M + 1) x 1 column vector, with matrix elements that
are independent of n because of the assumed stationarity,

= h=R"r

R;; = E[yn—iyn—j] , 0<i g <M
ry = E[:rnyn_i] << M

The optimum solution is derived by minimizing the mean-square estimation
error with respect to vector of filter weights h,

£=FE[e}]=min|. e,=1,—1,=x,—hlyn)

T

that is, setting the gradient with respect to h to zero,

oE

_ — 9 _ _ — p—1
o _E[En)(n)] _(Rh r) 0 = h=HRr

In the LMS adaptation algorithm, the weights h are replaced by time-varying
ones, h(n). which are updated in time by the gradient-descent method, but
using an instantaneous gradient obtained by dropping the expectation values
in the theoretical gradient, that is. making the replacement,

o€ o€
- —2F [tnv(n)] = o —2e,y(n)
so that the weights to be used at the next time instant are calculated by,
h(n+1)=h(.)—,u on =h(n)+2pe,y(n)

This leads to the following Widrow-Hoff LMS algorithm that combines the
filtering and weight-adaptation parts,

for each time instant n.

given x,,, y(n), h(n), do,
in =h"(n)y(n) (LMS algorithm)
Cn = Iy — I,

h(n+1)=h(n)+2ue,y(n)

quadratic performance index

5 190110 1 [

E(h+Ah)

gradient descent algorithm

OE(h)
Ah = —nu —
T an
(AE(h
E(h+ Ah) =~ E(h) + Ah - dfr 1)
E(h+ Ah) =&(h) — pu (‘?(_h)
dh

E(h+ Ah) < E(h)

the brilliant insight of the LMS
algorithm was taking the gradient
descent iteration index to be the
time index n, so that optimization
iterations are carried out at each
time instant.

Correlation Canceler Loop (CCL)

To illustrate the basic principles behind adaptive filters and understand their
convergence properties, consider the simplest possible filter, that is, a filter
with only a scalar weight and scalar observation,

+
. P e
=
h
Yn =| Xon= hyn

the weight /» must be selected optimally so as to produce the optimum esti-
mate of =, :
'i"n =/ Ln

The estimation error is expressed as
&= Elel] = El(x, — hy,)?)] = E[22] — 2hE[x,y,] + Ely2]h*
£ = E[z%] — 2hr + Rh?

The minimization condition is,

OE

P —2E[enyn] = —2r +2Rh =0 = hogy=R7'r
o

The dependence of the error £ on the filter parameter £ is parabolic, with a
global minimum occurring at the optimal value /oy = R™'r, as shown,

E(h)

]
]
I
]
|
I
]
]
I
]
I
|
=+

s St S

E min[~ """

K hiAh K

1=R_|!"

op

In the adaptive version, the filter parameter /2 1s made time-dependent, h(n),
and 1s updated from one time instant to the next as follows

hin+1)=h(n)+ Ah(n) (1)

where the correction term A/ (n) must be chosen properly in order to ensure
that eventually the time-varying weight h(n) will converge to the optimum:

h(n) — hop = R'r as n— oo

The filtering operation is still linear, but time non-invariant, so that at two
successive time instants, the estimate must be computed as,

Tn = h(n)yn,
;f.‘.n_|_1 = h.(?l- + 1)3;":—14—1

The simplest way to choose the correction term A/l (n) is the gradient-
descent, or steepest-descent, method. The change i — h 4+ AL must move
the performance index closer to its minimum than before, that is, A2 must
be such that

E(h+ Ah) < E(h)

Therefore, 1f we always demand this inequality, the repetition of the proce-
dure will lead to smaller and smaller values of € until the smallest value has
been attained. Assuming that A#h is sufficiently small, we may expand to
first order and obtain the condition

OE(h)

i

ah dh

9€ (h
<&Mh) = AhS) <4

i —

E(h) + Ah

If Ah 1s selected as the negative gradient of £, then this inequality will be
guaranteed,

OE(h)
Ah = — :
T
indeed. ,
OE(h) OE(h)
E(h)+ Ah — =E(h) — : < E(h
(h)+ Ah =22 = E(h) — p|— 2| < E(h)

The adaptation parameter ;¢ must be small enough to justify keeping only
the first-order terms in the above Taylor expansion. Thus, the updating of
the filter weight would be,

o€ (h(n
h(n+1) = h(n) + Ah(n) = h(n) — p (;g;f(?l))
L
Using the expression for the theoretical gradient,
o€ (h) |
—— = —2r+2Rh
oh ro e

we find,
h(n+1) = h(n) — p|—2r + 2Rh(n)]

hin4+1)=(1—-2uR)h(n)+2ur

This difference equation may be solved in closed form. For example, using
z-transforms with any initial conditions 7(0), we find,

h(n) = hopt + (1 — 2uR)™(R(0) — hep), Where hoy = R™'r

The coefficient i(n) will converge to its optimal value /o, regardless of the
starting value /(0), provided s is selected such that

1 -2uR| <1 = —-1<1-2uR <1

or, since 1 and [? are positive, we obtain the convergence condition,

To select ;. one must have some a priori knowledge of the magnitude
of the input variance R = E[y%]. Such choice for 2 will guarantee conver-
gence, but the speed of convergence 1s controlled by how close the number
1 —2uR 1s to one.

The closer it 1s to unity, the slower the speed of convergence. As jt is
selected closer to zero, the closer 1 — 2,1 R moves towards one, and thus the
slower the convergence rate.

Thus, the adaptation parameter ;e must be selected to be small enough to
guarantee convergence but not too small to cause a very slow convergence.
The special choice,

1 :
H=15p = 1 —-2uR=0

will result in convergence in one time step, and is equivalent to Newton's
method of solving the optimization equations, and eventually will be real-
ized via the RLS algorithm.

LMS Adaptation Algorithm

From the practical point of view, the above implementation is still not com-
putable since the adaptation of the weights requires a priori knowledge of
the correlations R and r. In the Widrow-Hoff algorithm the above theo-
retical adaptation algorithm is replaced with one that is computable. The
theoretical gradient,

o€ (h(n.))
oh

is replaced by an instantaneous gradient by ignoring the expectation instruc-
tions, that is, the theoretical gradient

hin+1)=h(n)—pu

E (h(n
: (a}(”)) = —2Ffeqyn] = —2r + 2Rh(n) = —2E[ty,] + 2E[42]h(n)
1
is replaced by
% = —2e,Y, = —2(;11,.1 — h.(-n)y.n)-y.n = —20,Yn + Qyﬁh(n.)
h

so that the weight-adjustment algorithm becomes

hin+1) = h(n)+2pe,y,

In summary, the required computations are done in the following order:

L.

1 S VS N

At time n, the filter weight /i(n) is available.

Compute the filter output, x,, = h(n)y,.

Compute the estimation error, €, = x,, — T',.

Compute the next filter weight, h(n 4+ 1) = h(n) + 2pe,y,.

(Go to next time instant n — n + 1.

The following remarks are in order:

L.

2.

The output error ¢,, 1s fed back and used to control the adaptation of
the filter weight A(n).

The filter tries to decorrelate the secondary signal from the output e,,.
This, is easily seen as follows: If the weight A(n) has more or less
reached its optimum value, then A(n + 1) = h(n), and the adaptation
equation implies also approximately that e, y,, >~ 0.

3. Actually, the weight A (n) never really reaches the theoretical limiting
value hopy = R~1r. Instead, it stabilizes about this value. and con-
tinuously fluctuates about it. A measure of these fluctuations is the
mean-square deviation of /(n) from hgy. that is, E|(h(n) — h..;,pt)z}.
Under some restrictive conditions, it has been shown by Widrow that,

E[(h(ﬂ) — h.opt)g] — 1t Emin (for large n)

thus, the accuracy of the converged weights will improve if j is chosen
smaller, however, this will also cause slower convergence speed. This
1s the basic trade-off of the LMS algorithm.

4. The approximation of ignoring the expectation instruction in the gradi-
ent 1s known as the stochastic approximation. It complicates the math-
ematical aspects of the problem considerably. Indeed, the difference
equation

hin+1)=h(n)+ 2pe,y, = h(n) + 2u (;rn — h.(-n)y.n)yn

makes h(n) depend on the random variable y,, in highly nonlinear fash-
ton, and 1t 1s very difficult to discuss even the average behavior of /i(n).

5. In discussing the average behavior of the weight i(n), the following
approximation is typically (almost invariably) made in the literature

E[h(n+1)] = E[h(n)]

= E|h(n)]

+ 2uF [x,y,| — 2pE | h(n)fui]
+ 2uFE [;lf.nyn] — 2uFE [h.(_ n.)] E [a,rg]
+ 2ur — 2ukE [h.[-n.)] R

— (1= 2uR)VE[h(m)] - 2ur
(1=2uR)E[h(n)] +2

where in the last term, E[h(n)yZ]. the expectation E'[h(n)] was fac-
tored out, as though % (n) were independent of y,,. With this approx-
imation, the average F [h.(_ -n.)] satisfies the same difference equation
as the theoretical one. Typically, the weight h(n) will be fluctuating
about the theoretical convergence curve as it converges to the optimal

value. as shown below

h(f’l} A

E[h(n)] —

hﬂpt = R_]T B

A realization of the CCL i1s shown below. The filtering part of the realization
must be clearly distinguished from the feedback control loop that performs
the adaptation of the filter weight.

|
Xn {‘>_ > €y
56\ A
Yo
A
h(n)
7 vy €,
4
1
N
N hn) 2w

t
filtering

part

Jﬁ

weight-
adjustment
part

1

Historically, the correlation canceler loop was first introduced in the con-
text of adaptive antennas as a sidelobe canceler. The CCL is the simplest
possible adaptive filter, and forms the elementary building block of more
complicated, higher-order adaptive filters.

Next, consider a simulation example of the CCL loop. The primary signal
T, was defined by,
r, = —0.38y, + v,

where the first term represents that part of x,, which 1s correlated with v,,.

The part v, 1s not correlated with y,,. The theoretical value of the CCL
weight 1s found as follows:

r = Elr,yn) = —0.8F[ynyn] + Elv,y,] = —08R+0 =
hopt = R™'r = 0.8

The corresponding output of the CCL will be x,, = hyy y,, = —0.8y,,. and
therefore i1t will completely cancel the first term of z,, leaving at the output
€p = Ty — Ty = Up.

In the simulation we generated 1000 samples of a zero-mean white-noise
signal y,, of variance 0.1, and another independent set of 1000 samples of
a zero-mean white-noise signal v,, also of variance 0.1, and computed z,,.
The adaptation algorithm was 1nitialized, as is usually done, to zero initial
weight A(0) = 0.

The figure below shows the transient behavior of the adaptive weight /(n),
as well as the theoretical weight E [h(n)}, as a function of the number of
iterations n, for the two values, ;= 0.03 and g = 0.01.

transient behavior of CCL loop

— LMS

|- -- meanl]

0 200 400 600 800 1000
iterations, n

Note that in both cases, the adaptive weight converges to the theoretical
value hey = —0.8, and that the smaller ;2 is slower but the fluctuations are
also smaller. After the adaptive weight has reached its asymptotic value, the
CCL begins to operate optimally, removing the correlated part of x,, from
the output e,,.

Adaptive Linear Combiner

A straightforward generalization of the correlation canceler loop is the adap-
tive linear combiner, where one has available a main signal z,, and a number
of secondary signals v,,(n), m = 0,1,...., M. These (M+1) secondary
signals are to be linearly combined with appropriate weights hg, hiq, .. ., loar
to form an estimate of z,,:

y [yo(n)]
- y1(n
T, = Z ho(0) Y (1) = [ho(n2), he(n), har(n)] Jl:) =h(n)ly(n)
m=0)
Lyn(n)
l
Xn €n
e
Xn

For time-series applications and spatial arrays, the weights and observation
vectors are defined at times instant n, as follows,

Ry
h.l
h =
LN
delay line
i Yn i _yﬂfﬂ) |
Yn—1 . . y1(n) .

y(n)= , = time series, y(n)= , = spatial arrays

| Yn—M | Ynr(n)

array elements

and the estimate at time n.

time-series — adaptive Wiener filter

+
Xn €n
A -
n
Yn
optimum linear combiner
delay line

spatial arrays — adaptive antennas

desired signal main antenna

- =0 »@Eﬂ
Yo(n) ’ hy(n) Na %\n

AA yi(n)

jammers %’ :
A

secondary array elements

o n(n) ’ hy(n)

optimum linear combiner

The theoretical and instantaneous gradients are,

o0&

e — —O ' Il e ';] | —

oh _E[eﬂ} (\n)} _(Rh(_n) r)

;—h — _QEH}F (\T?) -

E
and the resulting LMS algorithm, h(n+1)=h(n)—pu E)_h =h(n)+2pe,y(n)
for each time instant n,
given z,.y(n), h(n). do,
i, =h"(n)y(n) (LMS algorithm)

En — Lp — Iy

h(n+1)=h(n)+2pe,y(n)

I

mut be appended by the updating
of the observation vector y(n)

where in the time-series case, the vector y(n) must be updated by the delay-
line shift,

Un Yn+1
Yn—1 Un
Un—2 YUn—1
y(n)= _ = y(n+1)= ,
Yn—M+1 Yn—M+2
L Yn—M | Yn—M+1 |

whereas in the array case, y(n) and y(n + 1) represent the “snapshots™ of
the incident fields measured at the array elements at times n and n + 1,

[yo(n)] Cyo(n+1) 7

n wiln +1

y(n) = ylen) = yn+l)= yl(n.+ |
Lyar(n) | | ym(n+1)]

For the time-series case, the following version, which can be translated eas-
ily into MATLAB, uses a temporary (M+1)x1 state vector w that repre-
sents y(n) and gets updated at each iteration. Using MATLAB notation,

for n=1.2.3.....

read input pair x,, vy,

w(l) =y, o ow(l)]
w(2)

;f-n — hT“ W = \

f_-/.n__ — Iﬂ, - ;i-n__ _tl':.'. l\(\i?.l_l.{ _|_].) B

h=h+2pe,w

w = |w(l); w(l:end—1)] |<«— updates y(n) to y(n+1)

The algorithm is initialized to zero initial weights and state vector, that is,
in MATLAB notation,

h = zeros(M +1,1)
w = zeros(M +1,1)

Selecting the filter order

How does one select the order M of the adaptive filter? The rule-of-thumb
is that the filter must have at least as many delays as that part of x,, which is
correlated with v,,. To see this, suppose z,, 1s related to v,, by

LIp = ColYn + 1 Un—1 + -+ CLYn—L + Up

where u,, 1s uncorrelated with v,,. Then, the filter order must be at least L.
It M > L. we can write:

o T v
Ty = CYn + ClYn—1+ -+ CMYn—n + Uy =€ Y(0) + 1y

where ¢ 1s the extended vector having, ¢; = Ofor L +1 < ¢ < M. The
cross-correlation between x,, and y(n) is then,

r=F [;r.ny(n.)} = E[(}’T(T?)C)}’(Hﬂ = F [y(ﬂ)yT(ﬁ)]c =FRec

Thus, the Wiener solution will be, h = R~'r = ¢. This, in turn, implies
the complete cancellation of the y-dependent part of x,. Indeed, x,, =
h'y(n) =c¢Ty(n). and

Cpn = Ty — Ty = (CT}'(_H) + u.n) —cly(n) = un,

What happens if we underestimate the filter order and choose M < L? In
this case, we expect to cancel completely the first M terms of x,, and to
cancel the remaining terms as much as possible. To see this, we separate
out the first M terms writing

Un Yn—M—1
T, = [C[}, e C‘.M’] + [CM’—I—l- e CL] =+ Uy,
Yn—M Yn—L
Tn = €1Y1(n) +e3¥5(n) + up

The problem of estimating x,, using an Mth order filter is equivalent to the
problem of estimating x,, from y (7). The cross-correlation between z,, and

yi(n)1s,
E[Inh('”)] = E[}H('ﬂ-)}’?(”)]cl + E[}H(T?)Fg(ﬂ-)] Co

It follows that the optimum estimate of x,, based on y,(n) will be.

i, = Elz,y] (n)] E[yi(n)y] (n)] " 'ya(n)
= (c1 Ely(n)yi (n)} +c2Eb (n)yT (m)]) E[y1(n)y] (n)] 'y1(n)
= (T + T E[yy(n)yT ()] E[y)yl ()])y,(n)
= c{yi(n) +¢€5¥y(n)

where. B
Vo (n) = E[yy(n)y] (n)] E[y,(n)y] (n)] yi(n)

and is recognized as the optimum estimate of y,(n) based on y,(n). Thus,
the estimation error will be,

€Ep — Ly — 'i‘-n — [c'{yl(ﬂ) + ngZ(n) + 'u'-n] - [clyl(n) + cgfﬂfl(n”
€n = CQT [}'2(”) - 5"2;1(”-” T+ Unp

which shows that the y,(n) part is removed completely, and the y,(n) part
is removed as much as possible.

Speed of Convergence

The convergence properties of the LMS algorithm may be derived by restor-
ing the expectation values where they should be, that is,

o€
E — —QE[En}" (\-n)] = 2(1?]1(\?1) _ l‘)
resulting in the difference equation for the weight vector,
' 0E
{TI) (”) n -

h(n+1)=h(n) —2u(Rh(n) —r)
h(n+1)=h(n)—2uRh(n) + 2ur
h(n+1)=(/—-2puR)h(n)+2ur

with solution, where, h o, = R~ 'r,

h(n) =hoy + (I —21R)" (h(0) —hgy)

Convergence to h oy requires that the quantity, (1 — 2xA), for every eigen-
value A of R, have magnitude less than one (we assume that R has full rank
and therefore all its eigenvalues are positive):

.. 1
1-2u\ <1 & —-1<1-2uA\<1 & U{i,u{;

This condition will be guaranteed 1f we require this inequality for Ay, the
maximum eigenvalue:

1

max

0<p<

(convergence condition)

Note that Apa can be bounded from above by the trace of R,
)\max < tI‘(R)

and one may require instead the easier condition,

_ 1 _ 1
I < .
PEHER) T N

As for the speed of convergence, suppose that 1z is selected half-way within
its allowed range. i.e., near 1/2\,. then the rate of convergence will de-
pend on the slowest converging term of the form, (1 — 2uA)", that is, the
term having |1 — 2p)\| as close to one as possible.

This occurs for the smallest eigenvalue A\ = Apip. Thus, the slowest
converging term is effectively given by,

)'\min "
1 — 20 Ain)" = (1 —
(:) ()\max)

The effective time constant in seconds is obtained by writing t = n'1", where
T 1s the sampling period, and using the approximation,

T
)'\min)'\min —t/T
1 — ~exp | — nj)y=e
Amax)\max
where \
T max . .
=T = learning time constant
min

The eigenvalue spread of the covariance matrix R,

)\ max

/\\ min

controls, therefore, the speed of convergence, or, the learning time constant.

The convergence can be as fast as one sampling instant 7" if the eigen-
value spread is small, i.e., Apax/Amin =~ 1.

But, the convergence will be slow if the eigenvalue spread 1s large. As
we shall see shortly, a large spread in the eigenvalues of I? corresponds to a
highly self-correlated signal v,,.

Thus, we obtain the qualitative result that in situations where the sec-
ondary signal y,, 1s strongly self-correlated, the convergence of the gradient-
based LMS algorithm will be slow.

In many applications, such as channel equalization, the convergence must
be as quick as possible. Alternative adaptation schemes exist that combine
the computational simplicity of the LMS algorithm with a fast speed of con-
vergence. Examples are the fast RLS and the adaptive lattice algorithms.

Accelerating the LMS Algorithm — Newton’s Method

The possibility of accelerating the convergence rate may be seen by consid-
ering a more general version of the gradient-descent algorithm in which the
time update for the weight vector is chosen as

0E

ch
where M 1s a positive definite and symmetric matrix. The LMS steepest
descent case is obtained as a special case of this when M 1s proportional to
the unit matrix, M = p/. The above choice guarantees convergence towards
the minimum of the performance index £(h), indeed,

Jh

| dEN" [0E
el +am) = e(h) - (50) w50) < e

)&
£(h + Ah) = £(h) + Ah? (r—)

since M was assumed to be positive-definite and symmetric.

Since the performance index is
£ = E[e2] = E[(x, —hTy(n))’] = E[+?] = 2h"r + h"Rh

it follows that 0 /Ooh = —2(r — Rh), and the difference equation for the
adaptive weights will become,

h(n + 1) = h(ﬁ) + Ah(n) = h(n) -+ QM(I' — Rhfﬂ.))

Or.
h(n+1) = (I — 2MR)h(n) + 2Mr

with solution for n > 0,

hfﬂ) — h;}p[+ (I - EMR)H(]](U) o hopt)

where, h o, = R~'r, is the asymptotic value, and h(0), the initial value. The
choice of M can drastically affect the speed of convergence. For example,
if M 1s chosen as

M= (2R)™!

then
I —2MR =0

and the convergence occurs in just one time step!

This choice of M is equivalent to Newton’s method of solving the system

of equations,
, o€
f(h)y=——=20
(h) ch
for the optimal weights. Indeed, Newton’s method linearizes about each
point h to get the next point, that 1s, Ah is selected such that
of

f(h+ Ah)~f(h)+{— | Ah =0
' ' Jh

where we expanded to first order in Ah. Solving for Ah. we obtain

of \ 1
Ah=—(—] f(h
()

f(n) 4

f(h + Ah f(h o Ah =0
(h +) ~1t(h) + E 1 =

Newton's Method

of\ !
Jh:_(ﬁ) f(h

But since, f(h) = —2(r — Rh), we have, 0f /O0h = 2R. Therefore, the
choice, M = (2R) ™1, corresponds precisely to Newton’s update.

Note that the property that Newton’s method converges in one step is a
well-known property valid for quadratic performance indices (in such cases,
the gradient f(h) is already linear in h and therefore Newton’s local lin-
earization is exact).

The important property about the choice M = (2R)~! is that M is
proportional to the inverse of K. An alternative choice could have been
M = aR™! In this case I — 2MR becomes proportional to the identity

martrix.
[—2MR = (1 -2«a)I

and having equal eigenvalues. Stability requires that |1 —2a| < 1, or equiv-
alently, 0 < a < 1, with Newton’s choice corresponding exactly to the
middle of this interval, a« = 1/2.

Therefore, the disparity between the eigenvalues that could slow down
the convergence rate is eliminated, and all eigenmodes converge at the same
rate (which is faster the more M resembles (2R)~1).

The implementation of such Newton-like methods requires knowledge of
R, which we do not have (if we did, we would simply compute the Wiener
solution, h o,y = R7'r.)

However, as we shall see later, the so-called recursive least-squares algo-
rithms (RLS) effectively provide an implementation of Newton-type meth-
ods, and that is the reason for their extremely fast convergence.

Adaptive lattice filters also have very fast convergence properties. In that
case, because of the orthogonalization of the successive lattice stages of the
filter, the matrix I is already diagonal (in the decorrelated basis) and the
matrix M can also be chosen to be diagonal so as to equalize and speed up
the convergence rate of all the filter coefficients.

Recursive least-squares and adaptive lattice filters are discussed in AOSP-
Sections 16.16 and 16.18, respectively.

Finally, we would like to demonstrate the previous statement that a strongly
correlated signal y, has a large spread in the eigenvalue spectrum of its
covariance matrix. For simplicity, consider the 2x2 case

o1 o [T v " [R(0) R(1)

The two eigenvalues are easily found to be

)‘lmin — R(U) - |R(U|

and therefore, the ratio Apax/Amin 18 given by

Amax R(0) + |R(1)]

Since for an autocorrelation function we always have, |R(1)| < R(0), it
follows that the largest value of |R(1)| is £R(0), implying that for highly
correlated signals the ratio Apax/Amin Will be very large.

On the other hand, for uncorrelated signals, F(1) ~ 0, and the eigenvalue
spread becomes unity, Apax/Amin = 1.

Next, we look briefly at some applications:

— adaptive channel equalizers

— adaptive echo cancelers

— adaptive system identification

— adaptive inverse modeling

— adaptive noise canceling

— adaptive antenna sidelobe cancelers
— adaptive line enhancer

— adaptive linear prediction

— adaptive spectrum estimation

— adaptive angle-of-arrival estimation

Adaptive Channel Equalizers

Channels used in digital data transmissions can be modeled very often by
linear time-invariant systems. The standard model for such a channel in-
cluding channel noise is shown below.

channel noise

Vn
An channel - - Yn
transmitted > H.(z) N > received
signal signal

where H.(z) is the transfer function for the channel and v,,, the channel
noise, assumed to be additive white gaussian noise. The transfer function
H.(z) incorporates the effects of the modulator and demodulator filters, as
well as the channel distortions.

The purpose of a channel equalizer is to undo the distorting effects of the
channel and recover, from the received waveform v,,, the signal x,, that was
transmitted. Typically, a channel equalizer will be an FIR filter with enough
taps to approximate the inverse transfer function of the channel.

channel noise

Vi
Xp ——» channel N equalizer %
n
n HE@ | "o 7| HO
Xn)
transmitted e,
signal :
X
Vn optimal n
received ™ €qualizer
signal H(z)

locally generated “*n
pilot signal

/
/
/

received Vn adaptive X5
—P

signal equalizer

Adaptive Echo Cancelers

Consider two speakers A and B connected to each other by the telephone
network. As a result of various impedance mismatches, when A’s speech
reaches B, it manages to “leak™ through and echoes back to speaker A, as

though it were B’s speech.

speaker
A

(A's speech)

» speaker

(A's echo)

B

An echo canceler may be placed near B's end, as shown.

(A's speech)

(from A)
r \
echo speaker
canceler B
/\
_ y (A'secho)
(toA) = (e
Uy (A's echo)

[t produces an (optimum) estimate of A’s echo through B’s circuits, and then
proceeds to cancel it from the signal returning to speaker A. Again, this is
another case for which optimal filtering ideas are ideally suited. An adaptive
echo canceler is an adaptive FIR filter placed as shown.

v, = (A's speech)

(from A)
. i
adaptive speaker
filter B
/// /\

)Acn = (A's echo)

€n LE X, = (A's echo)

(to A) =

As always, the adaptive filter will adjust itself to cancel any correlations that
might exist between the secondary signal y,, (A’s speech) and the primary

signal z,, (A’s echo).

Adaptive System Identification

An adaptive filter can be used to identify an unknown system. A known
signal v,, 1s sent to the input of the system, and its output z,, serves as the
primary input to the adaptive filter, while y,, = v,,, serves as its secondary
input.

The adaptive filter will try to adjust itself until the error, e, = x,, — ,,,
1s minimized. ideally becoming zero. At that point, the adaptive filter will
be the same as the unknown system, since both are driven by the same input
and both are producing effectively the same output.

Assuming that the unknown system can be modeled as a (possibly long)
FIR filter, then if the FIR adaptive filter has at least as many wights as the
unknown system, the adaptive filter weights will converge to the system’s
weights. In particular, if the input signal v, is chosen to be uncorrelated
noise (i.e., no eigenvalue spread), then the convergence will be accelerated.

Vi unknown Xy +
system /
a

/
/

filter

Yn | adaptive | Xp |

Adaptive Inverse Modeling

A variation of the adaptive system identification case is shown below that
allows the identification of an inverse system. say, f(z). The adaptive filter
will converge to a transfer function, say, GG(z). which ideally is trying to
drive the error output to zero,

en=1In—n~0 = E(z)=2"PV(2) = H(2)G(2)V(z) =0

Oor.

~—D

P

H(z)

G(z) =

The delay >~D is needed in case H(z) has zeros outside the unit circle,

which become poles of 1/H (=), and can be made stable and causal by a
sufficient amount of delay.

Vn Z—D Xn + en
p
: A |
Vy | unknown | V, | adaptive | X 3
system H(z) filter G(2) |

adaptation algorithm

Adaptive Noise Canceling

x(n) = s(n) + vi(n) = desired signal plus noise

y(n) = vy(n) = noise reference

x(n) = v1(n) = adaptive filter output

e(n)

= x(n) — z(n) = s(n) +E‘1(-n) —v1(n) = s(n)

-

"
canceled noise

The adaptive filter processes an available noise reference signal vy(n) to
make an estimate of the noise component vq(n) of the primary signal, and
then proceeds to cancel it from the error output, thus, effectively resulting
in an estimate of the desired signal. The basic assumption of the noise-
canceling system is that vo(n) is correlated with vy (), but not with s(n).

AN

signal | o> x(n) = s(n) + vy(n) 1 e(n) - s(n) + v,(n) — Y, (n)
source \‘ ‘/_ |
‘@/@ i
é’f‘@é’“\o A |
: //Q@’ B / i
noise | y(n) =v,(n) adaptive |
SIS i filter A A |
noise reference 2(n) = $,(n) |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LMS, RLS algorithm

Adaptive Sidelobe Canceler

The transmitting antenna of the desired signal is assumed to be oriented
along the mainlobe of the primary receiving antenna. Jamming signals are
picked up by the primary antenna through its sidelobes, and also by the
secondary antennas.

Since the jamming signals picked up by the secondary antennas are cor-
related with those picked up by the sidelobes, the adaptive linear combiner
will act as a noise canceler that estimates the sidelobe signals and cancels
them from the error output, leaving the desired signal.

desired signal main antenna . N
n AR -0
O O

A\

AA'
J'clmmersA %’

secondary array elements

Yy (n) ‘ ()

Adaptive Line Enhancer

A special case of adaptive noise canceling is when there 1s only one signal
r, available which is contaminated by noise. In such a case, the signal
T, provides its own reference signal v,,. which 1s taken to be a delayed
replica of x,,, that is, v, = x,,_a, as shown below, and referred to as the
adaptive line enhancer (ALE). The adaptive filter will respond by canceling
any components of the main signal z,, that are in any way correlated with
the secondary signal y,, = x,,_A.

Xn €n

24

s
/

A filter A

delay | Yn =*n-a | adaptive

adaptation algorithm

It can also be thought of as an adaptive signal separator. Suppose the sig-
nal x,, consists of two parts: a narrowband component that has long-range
correlations such as a sinusoid, and a broadband component, such as white-
noise, which will tend to have short-range correlations. One of these could
represent the desired signal and the other an undesired interfering noise.

x, = BB(n) + NB(n) +,~ en=BB(n)
«
delay | BB(n=4) + NB(n-4) | adaptive _
A Vn filter)%n _\B ()

adaptation algorithm

The ALE acts as an adaptive signal separator, provided A is properly se-
lected. If A is longer than the effective correlation length of the BB compo-
nent, the delayed replica BB(n — A) will be entirely uncorrelated with the
BB part of the main signal. The adaptive filter will not be able to respond to
this component.

On the other hand, if A is shorter than the correlation length of the NB
component, the delayed replica NB(n — A) that appears in the secondary
input will still be correlated with the NB part of the main signal, and the
filter will respond to cancel it.

ALE simulation example

SNRAB = 0; SNRa = 10% (SNRdAB/10) ; % SNR

A=1; wO = 0.02*p3i; % amplitude & frequency
L = 3000;

n=0:L-1;

s = A * sin(wO*n) ; % single sinusoid

o°

add sinusoid with doubled amplitude and frequency
n0 L/2;
s = A * sin(wO*n) .*(n<=n0) + 2*A * sin(2*wO*n) .* (n>n0) ;

o°

o°

seed = 1000; % noise
randn ('state',6 seed) ;
sigv = 1/sqrt(2*SNRa) ; % noise var = sigv”*2

o°

v = sigv * randn(1l,L); zero-mean gaussian

X =8s + v; % noisy sinusoid
D = 10; % ALE delay
y = [zeros(1,D), x(l:end-D)]; % delayed input to ALE

mu = 2e-05; %
M = 200; %
h = zeros(M+1,1) ; %
w = zeros(M+1,1); %
for n = 1:L %
w(l) = y(n); %
xhat(n) = h.'*w; %
e(n) = x(n) - xhat(n); %

h =h + 2*mu*e(n) *w;
[w(l),; w(l:end-1)];

o°

o°

w =
end
n=0:L-1;

figure; plot(n,x,'b-");
title('noisy sinusoid')

figure; plot(n,s,'b--', n,xhat,

title ('ALE output');

adaptation parameter
filter order
initialize weights
initialize delay 1line

LMS algorithm

current input to filter
filter output
estimation error

adapt filter weights
update delay-line vector

Vr_l),.

noisy sinusoid

ALE output

noise—free

estimated

—

=

e

-— -
- _
I —
— _
——
————

_—— .

2500

2000

1000

500

4

2500

2000

1000

500

1500 3000
time samples, n

0

1500 3000
time samples, n

0

changing sinusoid

ALE output

—— il
—————
— = ==
e
——
e
—
— =
—

===
e i——
—— — — —
————
—

——————————

——
S ——
i —
M —
e ————= =
= w——— -
B el
T e - -
- S e e = e = e e
e

— _—

noise—free

estimated
P
f
|

2500

2000

1000

500

2500

2000

1000

500

1500 3000
time samples, n

0

1500 3000
time samples, n

0

Adaptive Linear Prediction

A linear predictor is a special case of the ALE with the delay A = 1. It is
shown below, where we have denoted the main signal by 7,,. The secondary
signal, which is the input to the adaptive filter, is then v,,_1.

€ yi’l +
~%—= AR - e
TS
v |
e A I
: Yn |
» adaptive i
g Yooy | filter |
Cn AR Yn 1 Yn—1 [Yn— B Yn—m
\ 7 v
al(n) az(”) aM(n)
Nr !
2y L,
NI

Due to the special sign convention used for linear predictors, the LMS adap-
tation algorithm now reads.

3}?1 - [a'l(”')yn—l + a?("-'l')yn—ﬁ 4+ 4 H-M'('n-)yn—ﬂrf}
€n = Un — 'g}-n — Un + ﬂ'l(n')yn—l +---+ a‘ﬂbf(”‘)yn—ﬁf
am(n+1)=an(n) —2pe,Yp—m, m=12....M

Because of the importance of the adaptive predictor, we present a direct
derivation of the LMS algorithm as it applies to this case. The weights a,,
are chosen optimally to minimize the mean output power of the filter, that
1s, the mean-square prediction error:

£ = El¢?] =a’ Ra = min

where a = [1,aq,as, .. ., apr]? is the prediction error filter.

The performance index £ is minimized with respect to the M weights a,,.
The gradient with respect to a,, 1s the mth component of the vector 2Ra,
namely.

=2(Ra),, =2(Ely(n)y(n)']a) =2(E[y(n)y(n)"a])

mt

= 2(Ely(n)ea)),, = 2Elen tn-m)

The instantaneous gradient is obtained by ignoring the expectation instruc-
tion, so that the LMS time-update of the mth weight becomes,

0E
Adap,(n) = —p - = 2l lYp-m. m=12....M

da,,

so that the adaptive weights are updated by,

am(n+1)=ay,(n)+ Aa,,(n) = ap(n) —2pentp—m, m=12....M

Adaptive Spectrum Estimation

The adaptive predictor may be thought of as an adaptive whitening filter, or
an analysis filter which determines the linear prediction model parameters
adaptively. As processing of the signal v, takes place, the autoregressive
model parameters a,,, are extracted on-line.

synthesis filter

€np —>

1/A4(2)

4’.)/71

Yn—>

A(z)

.

analysis filter

4(3) =1+ alg_1 + 0323_2 + - T (1‘.1.1!3_"“"{

Yn — — l:al Un—1 + QolYp_o + -+ Qp y'?l-_ﬁ'ir] T €n

€En = Un + Yn—1 + a2 Yn—2 + -t Ay Yn—M

The extracted model parameters may be used in any desired way—for ex-
ample, to provide the autoregressive spectrum estimate of the signal v,,.

One of the advantages of the adaptive implementation is that it offers the
possibility of tracking slow changes in the spectra of non-stationary signals.
The only requirement for obtaining meaningful spectrum estimates 1s that
the non-stationary changes of the spectrum be slow enough for the adaptive
filter to have a chance to converge between changes.

Typical applications are the tracking of sinusoids in noise whose fre-
quencies may be slowly changing. or tracking the time development of the
spectra of non-stationary EEG signals.

At each time instant n, the adaptive weights a,,(n), m = 1,2,.... M
may be used to obtain an instantaneous autoregressive estimate of the power
spectrum of v,, in the form,

1

B “ —+ (1-1('.1’2.)6?_3":"" + (I.Q('n.)t?_gj""" -+ e+ (].AM(_-H_JE_*M:?W}E

*Sf?l (w)

The same adaptive approach to LP spectrum estimation may also be used in
the problem of angle-of-arrival estimation, or, multiple source location by
adaptive sensor arrays.

The only difference in the algorithm is to replace v,,—,, by v, (7). that is,
by the signal recorded at the mth sensor at time n—and to use the complex-
valued version of the LMS algorithm. For completeness, we summarize the
computational steps in this case.

e(n) = yo(n) + ﬂ-l(_?l)yl(?l) + ﬂz('??)yz(??) SRR G-M(ﬂ-)'yﬂf(ﬂ-)
am(n+1) =ap(n) —2pe(n)y; (n), m=12....M

At each time instant n2, the corresponding spatial spectrum estimate may be
computed by,

) 1
Sll) = — . _ _
‘l + ﬂ.l(-?l-je_ﬂl + ﬂ-g(?l)ﬂ’_%k 4+ ...+ GM(??)E—J‘»{;&‘

where k denotes the normalized wavenumber

k= wd sinfl = 2rd sinfl, A\ = wavelength
C’

incident plane wave

77 > X - axis

Yo(n) yl(n)T yz(n)T x yM(n)T
/{ /{ /{

wd | 2rd .
b = —_HIIIH — sin ¢

(i 7

Duality between time-series and array problems

y()(n)T N (H)T yz(n)T -

q (n)

a,(n)

Yn-1
yl(n)
aO(n) al(n) c.
Av
\

T

input
part

TL

linear
combiner
part

1

e

input
part

JF

linear
combiner
part

S

RLS Algorithm

All adaptive and block processing implementations of optimum Wiener fil-
tering problems effectively replace the theoretical performance index &,
with a computable one. Examples are:

theoretical: € = Ee2| = min
| NoL+M
)) . . o 2 .
block processing: En = N e, = min, exact
} n=0
LMS adaptive: £, = €2 = min, gradient-descent
n
RLS adaptive: En = A" "*e2 = min, exact
k=0
L -
A
Vn Wiener
——»
Xn

A

filter I %

design criterion
Ele,?] = min

The LMS adaptation algorithm. based on the steepest descent method,
provides a gradual, iterative, minimization of the performance index. The
adaptive weights are not optimal at each time instant, but become so only
after convergence. By contrast, the RLS adaptation algorithm 1s based on
the exact minimization of a least-squares error criterion, so that the filter
weights are optimal at each time instant 7.

To better track possible non-stationarities in the signals, the performance
index includes exponential weighting,

E, = Z A”_keg(k) (RLS performance index)
k=0

E,=e*(n)+ N (n—1)+)\252(?1 —2)+ -+)\”52([})

where the forgetting factor A is positive and less than one. The performance
index emphasizes the most recent observations and exponentially ignores
the older ones.

Setting the derivative with respect to h to zero, we find the least-square

versions of the orthogonality equations,

IE,, .. - n—k_ (1N (1.
o :_g;A e(k)y(k) =0

which may be cast in a normal equation form,

Zﬂ: A" (k) —hTy (k)] y(k) =0, or.
k=0

[Z A”"“y(k)y(ﬁsf] h=) \Fa(k)y(k)
k=0 k=0
Define the quantities,

T

R(n) =) X"*y(k)y(k)"
k=0

T

r(n) =Y ANFu(k)y(k)

k=0

(2)

Then, we may rewrite the normal equations as,

R(n)h =r(n)

with solution, h = R(n)~'r(n). Note that the n-dependence of (n) and

r(n) makes h depend on n, and we shall write, therefore,

h(n) = R(n)"'r(n) = optimum weights at time n

and similarly,

h(n—1)=R(n—1)"'r(n —1) = optimum weights at time n—1

(3)

(4)

These are the least-squares versions of the ordinary Wiener solution, with
R(n)andr(n) playing the role of the covariance matrix, ? = E[y(n)y’ (n)].

and cross-correlation vector, r = E|x(n)y(n)|.

These quantities satisfy the exponential-movine-average (EMA) updating
properties, derivable from (2),

R(n)=AR(n—-1)+y(n)y(n)" (5)
r(n)=Ar(n—1)+z(n)y(n) (6)

Because F(n).r(n) satisfy the time recursions (5) and (6), one might
expect that h(n) and h(n — 1) can also be related recursively to each other,
resulting in the RLS algorithm.

Assuming tentatively that R(n) and R(n — 1) are invertible matrices (an
issue to be clarified below), and multiplying Eq. (5) from the left by £(n)™*
and from the right by A™'R(n — 1)~!, we obtain,

ARn—1)""'=Rn) 7+ Rn)'y(n)y(n)'R(n —1)"2A™ ()

This leads us to define the so-called a priori and a posteriori “Kalman gains™,

kK(n)= R(-n)_ly[-n.) = a posteriort Kalman gain

8
k(n/n—1)=\"'R(n —1)"'y(n) = a priori Kalman gain ()

as well as the a priori and a posteriori estimates and estimation errors,

#(n) =h(n)"y(n) = a posteriori estimate of z(n)

9
e(n) = x(n) — x(n) = a posteriori estimation error ©)
#(n/n—1)=h(n—1)"y(n) = a priori estimate of x(n) (10)
e(n/n—1)=x(n) — x(n/n — 1) = apriori estimation error
Using the Kalman gains (8), we can re-express the estimates as follows,
i(n) = h(n)Ty(n) = r(n)TR(n) "ty (n)
X _ - T o , or,
zn/n—1)=h(n—-1)y(n)=r(n—1) R(n—1)""y(n)
z(n) =r(n)"k(n)
(11)
t(n/n—1)=Ar(n—1)"k(n/n—1)

We note that x(n) is the optimum estimate of x(n) using the optimum
weights at time n, whereas z(n/n — 1) is a suboptimal estimate of x(n),
or a tentative estimate of z(n). obtained by using the old optimum weights
h(n — 1) instead of the updated ones at time n, but acting on the same
observation vector y(n) at time n.

Let us define also the so-called “likelihood™ scalar variables.

v(n) =k(n/n — l)Ty(n) =2 ly(n)'R(n— 1) y(n)
1 (12)

p(n) = Tron) = p(n)r(n) =1— pu(n)

With the definitions (8), we can write (7) in the form,

A R(n— 1) =Rn) ™ +k(n)k(n/n— 17" (13)

and if we act by both sides of (13) on y(n) and use (8) and (12). we find.
A IR(n — 1)7ty(n) = R(n) 'y (n) + k(n)k(n/n — 1)'y(n), or

k(n/n—1)=Kk(n) +k(n)v(n)=[1+v(n)|k(n)
or, solving for K(n), and using (12),

k(n)=pn)k(n/n—1) (14)

As a consequence of this, we note also that,

y(n)' R(n)"'y(n) =y(n)'k(n) =y(n)'k(n/n—1)pu(n), or
y(n)TR(n)'y(n) = p(n)v(n) =1 — pu(n)

Next, we derive a relationship between the a priori and a posteriori estima-
tion errors, using (11) and the recursion (6). and Eq. (14),

r(n) =x(n) — r(?z)Tk(n)

Ar(n—1) +z(n)y(n)]! u(n) k(n/n—l
r(n—1)" k(n/n— Du(n) — x(n)p(n)y(n) ' k(n/n —1)
;i(n./-n.—l) (n) — x(n)p(n)r(n)

—z(n/n—1)pu(n) — [1 — pi(n)]T[n)

lz(n) —2(n/n—1)], o,

e(n) =p(n)e(n/n—1) (15)

e(n)=ux

|
>..-"|—| H)

..
[y

=
T T T T S

..
=

Next, we obtain the time-updates for the optimum weights, using Egs. (3)
and (4), and the recursions (5) and (6), and starting with,
R(n)h(n —1) = [)\H(_H— —1)+y(n)y (-n)T} h(n—1)

= AR(n—1)h(n—1)+y(n)y(n)"h(n—1)
=Ar(n—1)+y(n)z(n/n—1)
— r(n) — 2(n)y(n) +y(n) &(n/n — 1)

(n) — |z(n) —z(n/n—1)|y(n)

(n) —e(n/n—1)y(n)

and multiplying both sides by R(n)~!

h(n—1) = R(n)'r(n)—e(n/n—=1)R(n)"*y(n) = h(n)—e(n/n—1)k(n)

or, solving for h(n).

h(n)=h(n—-1)+¢(n/n—1)k(n) (16)

Putting all the steps together, after defining the matrix inverses,
P(n)=R(n)™, Pn—1)=Rn-1)"

and rearranging Eq. (13), we obtain the RLS algorithm,

for each time instant n. do,
k(n/n—1)=X"P(n—1)y(n)
1

S — (o — 1\ (o I
vin)=k(n/n—1)"y(n), pn) T+ ()

k(n) = p(n)k(n/n—1)

P(n) = rlm —1)—k(n)k(n/n—1)T 07
#(n/n—1)=h(n—1)"y(n)

e(n/n - 1) — a(n) — i(nfn— 1)

(n) = p(n)e(nfn — 1)

(n) = (n) —e(n)

(n)=h(n—-1)+e(n/n—-1)k(n)

f"a

T
h

y

w = zeros (M+1,1);

h = zeros(M+1,1);
delta =

lambda =

P = eye (M+1l) /delta;

' H=1[];
for n=1:1length (x)

w(l) = y(n);

kO = P*w/lambda;
nu = k0'*w;

mu = 1/ (1+nu) ;
kl = mu*k0;

P = P/lambda - kl1*kO';
P = (P+P')/2;

xhat0 = h'*w;

e0 = x(n) - xhatO;

e(n) = mu*el;

xhat(n) = x(n) - e(n);
h =h + e0O*kl;

w= [w(l); w(l:end-1)];
$ H= [H, h];

end

o°

oe

o° o° o oP°

o°® d° o° oP o°

o°® o° o° o° oP°

o°

o° o° o° o° o° oP

read array of primary input x(n)
read array of secondary input y(n)

initialize delay line
initialize filter

e.g., delta = 0.001

e.g., lambda = 0.999
initialize convariance inverse

collect h's for plotting, optional
RLS algorithm

current input to filter

a priori Kalman gain vector
likelihood variable

likelihood variable

a posteriori Kalman gain vector
update P

symmetrize P, optional

a priori estimate of x

a priori estimation error

a posteriori estimation error

a posteriori estimate of x

update h

update delay-line vector

collect h's for plotting, optional

We also consider the RLS version of the adaptive predictor,

for each time instant, n = 0.,1,2. ..., do,
k(in/n—1)=X"1P(n—1)y(n)
|
1+,
e(n/n —1) =y(n) +al(n —1)y(n) = a priori error

Ve =Kk(n/n—1)7Ty(n), p,=

(19)

a(n) =an—1) —p,e(n/n—1)k(n/n—1)
y(n/n—1) = —a’(n)y(n) = a posteriori prediction

Pn)=\X"1P(n—1) — pu,k(n/n—1)k(n/n — 1)1

y(n+1)=|y(n); y(l:end—1)]

and initialized at, P(—1) = o6~ Ly, a a(—1) = 0, y(0) = 0. The last

step expresses (in MATLAB notation) the delay updatmDF operation that is
necessary for the next iteration of the loop,

[ay(n)] [Un—1] Ty
, ag(n)) Yn—2) Un—1
a(n)=| ", |. ym)=|" = ym+rl=| "
Lap(n) | Yn—M _ | Un—M+1

RLS adaptive predictor

y:
M= ...
delta =
lambda =
w = zeros(M,1);
a = zeros(M,1);
P = eye (M) /delta;
for n=1:1length(y)
k0O = P*w/la;
nu = k0'*w;
mu = 1/ (1+nu);
el = y(n) + a'*w;
kl = mu*kO;
a =a - e0*kl;
ypred(n) = -a'*w;
P = P/la - kl1*k0';
P = (P+P')/2;
w

end

= [y(n); w(l:end-1)];

o°

o o° oP

o° oP°

o°

o° 00 o° o o o° P o° oP

o°

read array of input data y(n)

e.g., M =10

e.g., delta = le-4

e.g., lambda = 0.999

initialize delay line

initialize prediction coefficients
initialize covariance inverse

a priori Kalman gain
likelihood variable

likelihood variable

a priori prediction error

a posteriori Kalman gain
update prediction coefficients
a posteriori prediction of y(n)
update covariance inverse P
symmetrize P, optional

update delay line

Neural Networks — Overview

Neural networks are generalizations of adaptive processing systems that in-
volve both linear and non-linear operations across multiple stages (hidden
layers). They can be adapted by the LMS algorithm and its implementation
via backpropagation. Some useful references are:

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Inter-
nal Representations by Error Propagation,” in D. E. Rumelhart and J.
L. McClelland, eds., Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Vol. 1, Cambridge. MA: MIT Press,
1986.

[2] M. T. Hagan, et al, Neural Network Design, available freely from,
http://hagan.okstate.edu/nnd.html

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016, available from, http: //www.deeplearningbook. org.

A typical neural network is depicted below. For clarity only two hidden
layers are shown, but any additional layers can be added as necessary, as in
deep learning networks.

weights

J.E]}"E]‘S 0 Wu bU 1 Wl b]_ 2 Wz bz 3
_ O O O
O output traming J—
pattern pattern € =d-x
@ — X d ° ’
. to backprop

activation f f b

Starting with an applied input pattern xg, the output pattern x5 is com-
puted by the following sequence of operations defined by the connection
matrices W, and bias weights b,.. = 0, 1, 2, and activation function f(u),

forward pass

u| — H_{] Xp + b[l

X1 = f(uy)
u, = Wixqy + by (20)
Xy = f(ug)

Uy = IITQ X9 + bg
last step, X, = f(u,), is optional —| X3 = [(u3)

The vector dimensions of the layers are,

My x 1, input layer, X0

My x 1, hidden layer I, uy, X1 = f(uy)
My x 1, hidden layer 2, wus, Xo = f(u2z)
Ms x 1, output layer, us, X3 = f(us)

so that the dimensions of the connection matrices and bias weights will be,
Wo, My x My and by, M; x1
Wiy, My x My and by, M;x1
Wy, M3 x My and bs, M;x1

and the activation functions are assumed to operate element-wise, that is, if
u; 1s the i-th component of a vector u. then, the i-th component of the vector

flu)is fu;).

During the training phase, a set of training input/output patterns, {XD. d}.
are applied to the network. and the connection matrices and bias weights are
adapted to minimize the square deviations of the actual outputs x5 from the

desired outputs d. that is, minimizing the performance index.

Z €l ey = Z (d —x3)7(d — x3) = min

patterns patterns
weights
layers 0 WO bo | VVI bl 2 VVz b2 3
— /\

.

XA XA

. o - output training
O O X3 d

M X

Xo Xo X9 Us X3

activation f f f

‘

(21)

CcIror
€3 = d - x3

to backprop

Several types of activation functions f(u) have been used. some of which
are listed below together with their derivatives f’(u), with the most common
being the sigmoid logistic function, but the rectified linear unit (ReLLU) is
also quite popular,

1

logistic: Jlu) = pp—
e

symmetric logistic: J(u) = tanh (E—;)
softplus: f(u) =In(1+e*)

linear: flu)=u

rectified linear: [(u) =ulU(u)

sinusoid: f(u) =sinu

logistic:

symmetric logistic:
softplus:

linear:

rectified linear:

sinusoid:

1 .
f!(u) = §[1 — f*(u)]
f(u) = 1 ft.,_u
flu) =1

f'(u) = U(u) = unit-step function

f'(u) = cosu

The adaptation of the weights is usually implemented with the gradient-
descent, Widrow-Hoff LMS, algorithm, that is, the weight updates are com-
puted by the following rule with a small positive adaptation constant j,
where 1W,;; denotes the 7 matrix element of the -th connection matrix 17,
and b,; denotes the -th component of the bias weight b,

0.J 0.J
. . Abyy = —p - .
) II_ﬂj a db-ri

The updated weights are then,

W,=W,.+AW,., r=0,12

(23)
b, =b,+Ab,. r=0.12

The updates can be applied:

(1) either on a pattern-basis, that is, .J arises only from one pattern and the
updates are applied for that pattern, and the whole process is repeated
over all the patterns till convergence,

(11) or on an epoch-basis, that is, a whole series of input/output patterns is
applied and the corrections AW,;;, Ab,; are accumulated over all the
patterns in the epoch before the updated weights are computed, and
then, the whole epoch is repeated till convergence.

The backpropagation algorithm [1] is a convenient way of calculating the
updates (22) based on each pattern {x{;,. d } and makes use of the following
gradients of the performance index,

a.J .
e, =——., r=1273 (24)
du,
or, component-wise,

To see how this works, start with the updates of the last connection
weights, W5, bs. Given an input pattern, Xg, then after the forward pass
of Eq. (20), we have computed all layer signals, u,., x,., » = 1,2, 3. Be-
cause .J depends on W5, by only through the variable us, we have for the
partial derivatives of the updates,

o a7 aJ Ouz; |
AWoij = —p Wy, = —H Ouiz; OWayj = [L€3;T2; (25)
aJ 0J Dus; h

Abg; =

e Oby; s Duz; Oby; e

where we used the definitions (24) and the partial derivatives of the connec-
tion formula,

Us = I’I"TQXQ + bg — Ug; = Z I"I-"Tgij ;I’-Qj + bgi
J

s, dus;

Eqgs. (25) can be written in the compact matrix forms,
AWy = pesxd . Aby = pies (26)

The other updates can similarly be expressed in terms of the gradients (24).
In summary, we have,
J”rg = U ngg . Jbg — €3
AW, = pesx! . Aby = peg (27)
JT][TD = U elxDT . an — [€q
The backpropagation algorithm efficiently calculates the quantities, ez, es, e,
starting from the output layer and proceeding backwards to the input layer.

The operations involve the diagonal matrix of the derivatives of the acti-
vation function, defined as follows.

D(u) = diag|[f'(u)], or, element-wise. D;;j(u) =d; f'(u;) (28)

Given the output x5 of the network corresponding to the input pattern xg, the
error relative to the training pattern, d. will be. e3 = d —x3. Its contribution

to the performance index .J of Eq. (21), will be, Jyuq = (d —x3)T(d—x3) =

el €;. Starting with e, we have component-wise,

(‘_)J att 6’;1-’3' C}JT att
g = — i = —— PO — fug)(d; — x3;) . o,
Oug; Dug; Oxy;

e3 = D(ug)(d —x3) = D(uy)e;

Next, for ey, because Jyqq depends on x9 through us, and for e, because
Joar depends on x through us, we have,

€2 — —2 — — 5 — — L/ U2) —
‘ Oio; gy Ora; (u2) 7

(i_) Jpatt aﬂ-gj

— — D(us; . . = D(uoy; Woises:
2 Z Juzj Oxo; (1421 Z 2718
j j

el — _(?Jpatt _ _(:_:}I'l-i “?_Jpatt _ _D(uli)?-jpatt
Ay, duy; Ory; dry;

Voot Otlo;
_ _D(-u_h-) Z (patt C u?j‘ _ D(uli) Z T"T"'rlj-iﬁfj
J

~ Oug; Ory;
j

These can be written in matrix forms using the transposed matrices,

EQZD(
ElzD(

)IIQ €3
29
)Hl €9 (29)

Finally, putting all the computational steps together, we have for the two-
hidden-layer network,

forward pass backpropagation weight updates
u; = Wyxo + by €3 =d — x3 AWy = Ju.egxg
X; = f(uy) e3 = D(uz)es Abg = pies
u, =Wixi+by | = | €9 = HQT e; = | AW) = neq X}F
Xo = f(ug) ey = D(ug)e Aby = pey
u; = Wyxs + bo e = Wiey AWy = perxd
X3 = f(ug) e; = D(uy)e Abg = ey
weights

layers o Wyby 1 Wy b, 2 Wb, 3
AT T o
input @ O O o - output training orror
pattern >§§< pattern pattern cimd.x
3T 8-A3
X0 ‘ Q ‘—» X3 d
; gf\
@ ~ to backprop

Xo Xy X ”2 &%) Us X3
activation f f f

For a single-hidden-layer network depicted below, we have the simpler ver-
sion,

forward pass backpropagation weight updates

u; = Wyxg + by e =d — Xy AW, = peox?

X; = f(uy) = | €2 = D(ug)ey = | Ab; = ntes

u, = Wix; + by e = Wlhe, AWy = pegxg

Xy = f(ug) e; = D(uy)e; Abg = pey
weights

layers 0 Woby 1 W) b,

“M

4>

input @ output training orror
pattern >§§< pattern pattern
€= d - Xy
@ to backprop

Xo Xo X

activation f f

In practice, the weight updates, AW, Ab,, are smoothed using a simple
EMA with a forgetting factor A (referred to as “momentum’™ updating) be-
fore the new weights are computed. that is, instead of using the corrections
of Eq. (27),

AW, = pe,oqxt . =012

Ab, = e,
we use their EMA-smoothed versions,
AW, = NAW, + pe,oxt . 7=0,1.2
Ab, = Ab, + e,
Depending on whether one uses pattern-updating or epoch-updating, the

iterative computational algorithm for minimizing the performace index .J
may be summarized as follows.

for each epoch. do.
for each pattern, do,
forward pass, calculate, x,.
backpropagation pass, calculate, e,
AW, = NAW, + pe, . xI, r=0.1,2
Ab,. = A NAb, 4+ pe,q
if pattern-updating, update now
W, =W,+AW,., r=01.2
b,=b,+ Ab,
end
end pattern loop
if epoch-updating, update after all epoch patterns
W,=W,+ AW, r=0,1,2
b, =b, + Ab,
end
end epoch loop

In the pattern-updating case, the smoothed weight corrections are applied
to update the weights after each pattern presentation, whereas in the epoch-
updating case. the weight corrections are accumulated over the patterns and
applied to update the weights after all patterns have been presented. The
epoch loop is then repeated several times (typically, thousands of times)
until .J has been minimized.

Neural Networks for Estimation and Prediction

'

Neural Networks for Estimation and Prediction

I
Vn In »@ﬂ e,
v T
z-1 |
Yn-1 i
v i
z-1 |
NN Yn-2 Y
nputs v neural 5’\ n/n-1 |
: network — |
| prediction
z-1
Yn-M i
ackprop |

,,,,,,,,,

- - ————— — —— —— |

NN Experiments
XOR problem with 3:3:2 network

% Tnput | XOR output
O
% 0 0 0 | 0 1
% 0 0 1 | 1 0
% 0 1 0 | 1 0
% 0 1 1 | 0 1
% 1 0 0 | 1 0
% 1 0 1 | 0 1
% 1 1 0 | 0 1
% 1 1 1 | 1 0

MATLAB code in, s21nnexp.pdf

3:3:2 net, p=0.5, A=1, symm=0, seed=2017

— Jin)
o J in = T.44e—04

4000 6000 8000

epoch iterations, n

2000 10000

3:3:2 net,

u=0.5, A=0.5, symm=0, seed=2017

— Jin)
e J . =391le-04
min 1

2000

4000 6000 8000

epoch iterations, n

10000

3:3:2 net, p=0.5, A=1, symm=1

— Jin)
» J | =266e-05
min _

—

2000

4000 6000
epoch iterations, n

8000

10000

3:3:2 net, p=0.5, A=0.5, symm=1

— Jn)

s o . =1.25e-05
L min__ 1

-

2000

4000 6000 8000
epoch iterations, n

10000

3:3:2 net,

u=0.5, i=1,

symm=0, seed=20

2000

4000

6000 8000

epoch iterations, n

10000

3:3:2 net, pu=0.5, A=0.5,

symm=0,

seed=20

— Jin)

o J
min

= 3.10e-04

2000 4000

6000

epoch iterations, n

8000

NN Experiments
XOR problem with 3:3:2:2 network

% Tnput | XOR output
O
% 0 0 0 | 0 1
% 0 0 1 | 1 0
% 0 1 0 | 1 0
% 0 1 1 | 0 1
% 1 0 0 | 1 0
% 1 0 1 | 0 1
% 1 1 0 | 0 1
% 1 1 1 | 1 0

MATLAB code in, s21nnexp.pdf

3:3:2:2 net, n=0.5,

A=1, symm=0

— Jin)
s J . =2.01e-04
min

0 2000 4000

6000 8000 10000

epoch iterations, n

log . ﬂ{J)

3:3:2:2 net, p=0.5, A=0.5, symm=0

— Jin)
- = 1.02e-04

2000

4000 6000 8000 10000
epoch iterations, n

3:3:2:2 net, p=0.5, i=1, symm=1 3:3:2:2 net, n=0.5, A=0.5, symm=1
1 ! ! ; ; 1 ! ! ! ! :
— Jin) H— Ji(n)
o o . =3.43e-05 o J . =3.22e-06
Or-- i min : i OF e :n'nn _
—1F- 4 ~1F
3 D
t.;;E -2 . n;;E 2t
i= i =
-3 A i —3F
. | 8 -——____ 4 _4} :
___\é________\—“ -H-\-\-\-;L__‘_—‘——_ H H H
; ; ; i . ; i e
-5
2000 4000 6000 8000 10000 0 500 1000 1500 2000 2500 3000 3500

epoch iterations, n epoch iterations, n

NN Experiments
NN prediction of sunspot data with 4:4:1 network

Yn Vn t@ﬁ—> ey

- y \

7= |

Yn-1 i

v i

z-1 |

, NN Yn-2 _ Y
iputs | noural | f,,,
; network — i

| prediction

z-1

L Yn-M i
backprop |

4:4:1, u=01VP, =1, symm=0

1 !

— J(n)
e J =228e-03
. min__ I

0 1000

2000

3000

epoch iterations, n

4000

5000

4:4:1, pu=0.1P, i=1,

symm=0

--- data

1 —— training set
—— prediction
|
!
0.5} i |4
i
{ il :I I ‘] II ’I
fiel N
ol EERINER I b
:li'”lr‘ f"III'“l'IJl'lldlh:|l||||1l
I]'!'ijlj.lillf'.l A !"Ilqi'l:“r '. |h"ﬁ~i||||j'1l'|[l'|lh
A AU L
VLAY VU
v W oA ! ¥
-0.5}
0 50 100 150 200 250
vears

MATLAB code in, s21nnexp.pdf

NN Experiments

NN prediction of airline data with 8:4:1 network

Yn Vn t@ﬁ—> ey

- y \

7= |

Yn-1 i

v i

z-1 |

, NN Yn-2 _ Y
iputs | noural | f,,,
; network — i

| prediction

z-1

L Yn-M i
backprop |

8:4:1, u=0.01P, =1, symm=1 airline data, n = 0.0L/P, symm =1

! ! ! ! 1 ' '
n |r|"]
K i Iﬁ .U\
“;I. Y| |"wl fr L
_ 0.5¢ TR AT I T
| i IF I'-. I III| f]
I ' i |.|" II|I|'II;‘# IIII"I;'I
o
i | I.I _.‘h,' I'.I‘.I.L |'II'
[}' 'IJ;TU il u I'pl .
iy bl
, i e
_) Ilfltlll iy '|'||I'.. I;TTJ
ot) J.{ '
-0.5r \ 4) .
) S SOV SRRSO SIS S AW " data
— J(n) : ; Lyt ..
: : o ! — training set
o o min = 1.09e-02 L — prediction
-5 I T 1 1 -1 1
0 1000 2000 3000 4000 5000 0 50 100 150
epoch iterations, n months

MATLAB code in, s21nnexp.pdf

