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Topics: DTFT, spectral analysis, windowing vs. resolution tradeoffs, power
spectrum estimation, sample autocorrelation, periodogram, periodogram averaging
and smoothing, window types: rectangular, Hamming, Kaiser, DPSS, Chebyshev.

W (w)

sidelobe level m ~

RE:
3dB
;

f

3 dB width A

L

o first null

A W(w—w) + A, W(w—-w»)
N |




DTFT 12SP — Ch.9
frequency resolution and windowing 0&S - Ch.10

The discrete Fourier transform (DFT) and its fast implementation, the
fast Fourier transform (FFT), have three major uses in DSP:

(a) the numerical computation of the frequency spectrum of a signal
(b) the efficient implementation of comnvolution by the FET

(¢) the coding of waveforms, such as speech or pictures, for efficient trans-
mission and storage



To compute the spectrum of an analog signal digitally, a finite-duration
record of the signal is sampled and the resulting samples are transformed
to the frequency domain by a DFT or FFT algorithm. The sampling rate f;
must be fast enough to minimize aliasing effects. If necessary, an analog
antialiasing prefilter may precede the sampling operation.

The spectrum of the sampled signal X (f) 1s the replication of the desired
analog spectrum X ( f) at multiples of the sampling rate f, as given by the
Poisson summation formula. With the proper choice of sampling rate and
prefilter, it can be guaranteed that X ( f) will agree with the desired X ( f)
over the Nyquist interval,

TR()=X().  f<E

This property is a direct consequence of the sampling theorem, following

from the non-overlapping of the spectral replicas in X (f). However, if
the replicas overlap, they will contribute to the right-hand side. making the
sampled spectrum different from the desired one:

~~

TX()=X(H+X(f=f)+X(f+f)+ [f] < f?

replicas

Because digitally we can only compute X ( f), itis essential that the repli-

cated terms remain small over the Nyquist interval, which happens when
X (f) falls off sufficiently fast with f.



Even though i"{f} is the closest approximation to X ( f) that we can
achieve by DSP, it is still not computable because generally it requires an
infinite number of samples z(n7"), —oo < n < co. To make it computable,
we must make a second approximation to X ( f), keeping only a finite num-
ber of samples, say, x(nT"), 0 < n < L — 1. This time-windowing process
i1s illustrated below.
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In terms of the time samples z(n71"). the original sampled spectrum )?( )
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and its time-windowed version X, ( f) are given by:

o0
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Xp(f) =) a(nT)e It

n=>0

(DTFT)



We may take the duration of the data record to be, in seconds and in samples:

1, =LT = L:%:fSTL

The windowed signal may be thought of as an infinite signal which 1s
zero outside the range of the window and agrees with the original one within
the window. Defining the rectangular window of length L:

1, it 0<n<L-1
w(n) = _
‘ 0, otherwise
then, the windowed signal can be expressed as follows:
x(n), if 0<n<L-1
rr(n) = xz(n)w(n) = { “{ ) L

In terms of digital frequency, w = 27 f/ fs, we may denote the DTFTs,

otherwise

X(w) = Z ;F('?I)ﬁT_jW?l
27 n=—o00
“ ;f L-1 . (DTET)
s }{L(L&J) — Z I('?I.)E,’_jwn _ Z ;I’L(\'T?)E_jun
n=>0 n—— o
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As the length L of the data window increases, the windowed signal x (7)
becomes a better approximation of x(n). and thus. X (w). a better approx-
imation of X (w). In general, the windowing process has two major effects:

[. It reduces the frequency resolution of the computed spectrum, in the
sense that the smallest resolvable frequency difference is limited by
the length of the data record, that is, Af = 1/77. This is the well-
known “uncertainty principle.”

2

. It introduces spurious high-frequency components into the spectrum,
which are caused by the sharp clipping of the signal x(n) at the left
and right ends of the rectangular window. This effect is referred to as
“frequency leakage.”



Both effects can be understood by deriving the precise connection of
the windowed spectrum X (w) to the unwindowed one X (w). Using the
property that the Fourier transform of the product of two time functions is
the convolution of their Fourier transforms, we obtain the frequency-domain
version of, xr,(n) = x(n)w(n),

4 ,odw!
JYL ) = / )I][ {L...f — L.u) ')‘,.T

T i

where W (w) 1s the DTFT of the rectangular window w(n ), that is,

[t can be thought of as the evaluation of the z-transform on the unit circle at
z = /¥, Setting w(n) = 1 in the sum, we find:

L-1 L-1 1 — —L
Wiz) = Zu;{\ﬂ): "= Z:_ﬂ' = 1 — i_l
=0 nn=>0 -

Setting > = €/, we find for W (w):

1 —e7b  sin(wL/2) (L))
1 —edv  sin(w/2)

W(w) =




_ o ilLlw
W(w) = l—e - sin(wlL/2) —jlL-1)/2
1 —e v sin(w/2)
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The mainlobe peak at DC dominates the spectrum, because w(n) is es-
sentially a DC signal, except when it cuts off at its endpoints. The higher
frequency components that have “leaked™ away from DC and lie under the
sidelobes represent the sharp transitions of w(#n) at the endpoints.

The width of the mainlobe can be defined in different ways. For example,
we may take it to be the width of the base, 47/ L, or, take it to be the 3-dB
width, that is, where |17 (w)|? drops by 1/2. For simplicity, we will define
it to be half the base width, that is, in units of radians per sample:

20

(rectangular window width)

In units of Hz, it is defined through Aw,, = 27 Af,,/ fs. Thus,

fs 1 1
L LT T

Afy=2— =
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The peak of the first sidelobe occurs approximately halfway between the
two zeros 27 /L and 47/ L, that is, at w = 37 /L. Using W (0) = L, we find
that the relative heights are essentially independent of L:

‘ W(w) sin(wL/2)| ‘ sin(37/2) ‘ 1 2

7 (0) L sin(w/2) Lsin(37/2L) =T (3m/2L) " 3

w=3m/L

We assumed that L was fairly large (typically, . > 10), and used the
small-r approximation sin x ~ = with = = 37 /2L. In decibels, the relative
sidelobe level is
H? ( w)

R = 20log, W

2 _
~ 20 log,, (3) — —13.46 dB

w=3m/L



Next, consider the case of a single analog complex sinusoid of frequency f;
and its sampled version:
x(t) =™ _co <t < oo
x(nT) = ™hnl — pjrn o0 < < 00

where wy = 271'f; = 27 f1/fs. The spectrum of the analog signal x(?) is
the Fourier transform:

X(f) = f w(t)e ™It dt = f e 2SI gt = 6(f — f1)

Therefore, X ( f) consists of a single sharp spectral line at f = f,. For
a real sinusoid =(f) = cos(27 fit), we would get rwo half-height lines at
f = % f1. Indeed, the Fourier transform of the cosine is:

Ugmife o b _onj 1 1
cos(2m fit) = SN SR — So(f = i)+ S0(f + )



Assuming that f; lies within the Nyquist interval, that is, | f1| < f,/2,
we determine the spectrum of the signal x(nT") for | f| < f./2:
-~ 1 1
Xw)=X(f)==X(f)==0(f = f
(@)= R(f) = X (F) = 767 = )
Using the delta function property, |a|d(axr) = o(x), we can express the
spectrum in terms of the digital frequency w = 27 f /f, = 271’ f, as follows:

- 1 ) 1.
2mo(w — wy) = T 2rT 0271 f =271 f1) = ?O(f — f1)

Therefore, the spectrum of the sampled signal will be, over the Nyquist
interval:
X(w) =2m0(w — wy), —rm<w<nT

Outside the Nyquist interval, the spectral line is replicated at multiples
of 27, that is, 270 (w — wy — 2wm). The inverse DTFT generates the same
sampled sinusoid:

W dw

T - dw T . .
x(nT) = X(w)e!" — = 210 (w — wy )e?" — = 1"
(nT) /7.— (w)e o fﬁ_ o (w — wy)e 9 ¢



The windowed sinusoid consists of the L samples:
rr(n) = e, n=0,1,....L—1

Its spectrum 1s obtained by the frequency convolution property:

" INTL / dw' " o 5[, - / dw’
Xr(w) = X(W)W(w—-w')—= 210 (W' — w)W(w —w') -

2T - 2T
Because of the delta function ¢(w’ — wy) in the integrand, we obtain:

This is the translation of W (w) centered about w1, as shown below. Thus,
the windowing process has the effect of smearing the sharp spectral line
0(w — wy) at wy and replacing it by W (w — wy).
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The resolvability condition that the two sinusoids appear as two distinct
ones is that their frequency separation, Af = f, — f|, be greater than the

mainlobe width:

/s

or, in radians per sample:

(frequency resolution)



27
ACJJ Z AL‘J?_U —

These equations can be rewritten to give the minimum number of samples
required to achieve a desired frequency resolution Af. The smaller the
desired separation, the longer the data record:

= A Aw

The mainlobe width of 11/ (w) determines the amount of achievable fre-
quency resolution. The sidelobes, on the other hand, determine the amount
of frequency leakage and are undesirable artifacts of the windowing pro-
cess. They must be suppressed as much as possible because they may be
confused with the mainlobes of weaker sinusoids that might be present.



Hamming window

The standard technique for suppressing the sidelobes is to use a non-
rectangular window—a window that cuts off to zero less sharply and more
gradually than the rectangular one. There are literally dozens of possible
shapes for such windows, such as trapezoidal, triangular, Gaussian, raised
cosine, and many others.

One of the simplest and most widely used window is the Hamming win-
dow. It provides a suppression of the sidelobes by at least 40 dB. Another
one that allows the user to control the desired amount of sidelobe suppres-
sion is the Kaiser window. The Hamming window is a raised-cosine type of
window defined as follows:

2mn
0.54 — 0.46 cos ( ! ) ifo<n<L-—1
w(n) = L—1

0, otherwise



Hamming window

At its center, n = (L — 1)/2, the value of w(n) is 0.54 + 0.46 = 1,
and at its endpoints, n = 0 and n = L — 1, its value is 0.54 — 0.46 =
0.08. Because of the gradual transition to zero, the high frequencies that
are introduced by the windowing process are deemphasized. Its magnitude
spectrum |11 (w)] is shown below. The sidelobes are still present, but are
barely visible because they are suppressed relative to the mainlobe by R =
40 dB.

A (W)
rectangular [
w(n) A rectangular Hamming \
/ window window |
Hamming

T

R=40 dB
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Hamming window

The main tradeoff in using any type of non-rectangular window is that
its mainlobe becomes wider and shorter, thus, reducing the frequency res-
olution capability of the windowed spectrum. For any type of window, the
effective width of the mainlobe is still inversely proportional to the window
length:

or, in radians per sample:

where the constant ¢, known as the “broadening factor”, depends on the win-
dow used and is always ¢ > 1. The rectangular window has the narrowest
width, corresponding to ¢ = 1. The Hamming window has approximately
¢ = 2, that is, its mainlobe is twice as wide as the rectangular one. The
Kaiser window has variable ¢ that depends on the prescribed amount of rel-
ative sidelobe level R.



Given a finite data record of L samples, x(n), n = 0,1,..., L — 1, the

windowed signal is defined as follows, for the Hamming window, for n =
0,1,...,L—1,

rp(n) =w(n)z(n) = {0.54 — 0.46 cos ( L2” ”"1 )] x(n)

If #(n) consists of a linear combination of sinusoids, then each sharp
spectral line o(w — w;) of x(n) will be replaced by the Hamming window
spectrum W (w — w;). The frequency resolution depends now on the width
of the Hamming window A f,,. It follows that the minimum resolvable fre-
quency difference will be:

fs 1

= C—

Af > Af, =c¢
fzdl=cp=cq

This implies that the minimum data record required to achieve a given
value of Af is c-times longer than that of a rectangular window:
Js 2T

L >c - =
- Af Aw




Kaiser window for spectral analysis

We saw that one of the main issues in spectral analysis was the fradeoff
between frequency resolution and leakage. The more one tries to suppress
the sidelobes, the wider the mainlobe of the window becomes, reducing the
amount of achievable resolution.

The Hamming window provides about 40 dB sidelobe suppression at the
expense of doubling the mainlobe width of the rectangular window. We
recall that the mainlobe width Af,, of a window depends inversely on the
data record length L:

I

A, _
lw="7 A

where the factor ¢ depends on the window used. The more the sidelobe
suppression, the larger the factor ¢. Thus, to maintain a certain required
value for the resolution width Af,,, one must increase the data length L
commensurately with .

Most windows have fixed values for the amount of sidelobe suppression
and broadening factor ¢. Adjustable windows, like the Kaiser window, have
a variable sidelobe level R that can be chosen as the application requires.



Kaiser window for spectral analysis

Kaiser and Schafer have developed simple design equations for the use
of the Kaiser window in spectral analysis. Given a desired relative sidelobe
level R in dB and a desired amount of resolution Af,,. the design equations
determine the length L and shape parameter a of the window. More details
are to be found in project-4.

Once the window parameters { L, «} have been determined, the window
may be calculated by:

I, (a-\/l —(n = M) /M?)
lo(c)

w(n) =

where M = (L — 1)/2. and then applied to a length-L data record by
rr(n) =w(n)x(n), n==01,.... L—1

For filter design, a slightly different set of design equations are used to
determine the parameters L. cv, to be discussed in 12SP/Ch.10.



Kaiser window for spectral analysis

The modified Bessel function of first kind and zeroth order 1s defined as,

o0 .'l?k 2
Io(x) =) {kl?‘f]

k=0

It can be valuated at a vector of x’s by the built-function besseli,
F = besseli(0,x);

The Kaiser window can be evaluated using besseli, or, using the built-in
function kaiser, which requires as inputs the parameters L. v, and produces
the L window samples, w(n),n =0,1,..., L —1,

w = kaiser (L, alpha); % length-L column wvector



Power Spectrum Estimation

For random signals, such as sinusoids in noise, one must also deal with
the statistical reliability of the computed spectra. In I2SP / Appendix and
in project-4, we discuss the periodogram averaging method which may be
used to reduce the statistical variability of the spectrum estimate. Another
method of power spectrum estimation is periodogram smoothing, which 1is
also explored in project-4.

Both periodogram methods, require the total length L to be large. In
some applications, this may be impossible to achieve either because we can-
not collect more data, or because beyond a certain length L. the signal will
no longer remain stationary.

Parametric spectrum estimation methods, such as those based on linear
prediction, maximum likelihood, and eigenvector techniques, offer the pos-

sibility of obtaining high-resolution spectrum estimates based on short data
records.
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Random Signal Concepts

The autocorrelation function of a zero-mean random signal 1s defined
as the correlation between two samples x(n) and x(n + k) separated by a
time lag k. It 1s a measure of the dependence of successive samples on the
previous ones:

R,.(k)=F [;r.(-n + L*.);r(-n.)} (autocorrelation function)

For stationary signals, R,.(k) depends only on the relative time-lag £,
and not on the absolute time n. Note that F,.(k) 1S a double-sided se-

quence and, as a consequence of stationarity, it 1s symmetric in k. that is,
Ry (—Fk) = R,.(k).



Random Signal Concepts

The power spectrum of the random signal z(n) is defined as the DTFT
of its autocorrelation function R, (k). It represents the frequency content
of the random signal z(n) in an average sense:

Syp(w) = Z R, (k)e™“* | (power spectrum)

where w = 27 f/fs is the digital frequency in radians per sample. The
iverse DTFT relationship expresses R,,.(k) in terms of S, (w):

2

—




In particular, setting & = 0, we obtain the average power, or variance, of
the signal = (n):

‘ ; " lw fs/2 {
Uf; = R,.(0) = E[;IT("H.-)Z] = / Sza(w) ( = / Sea(f) g
. Z’F —fs/Q fs

S:m*(f) — Z RT;EU‘J)G_QWjﬂ'?/!fS

The quantity S,..(f)/ fs represents the power per unit frequency interval.
Hence, the name “power spectrum”™ or “power spectral density” (psd). It
describes how the signal’s power is distributed among different frequencies.
Its integral over the Nyquist interval gives the fofal power in the signal.

Often it is more convenient to work with the z-transform of the auto-
correlation and replace » = e/¥ = ¢?™//Js to obtain the power spectrum
Sex(w) or Su.(f):

Sﬂf’f(z) — Z R:z?;r(k)fi_'{;

k=—o00




Random Signal Concepts

White noise has a delta-function autocorrelation and a flat spectrum, as
shown below.

Because (by definition) successive signal samples are independent of
each other, the autocorrelation function will factor for £ # 0 into the product
of the means which are zero:

Ruw(k) = Elz(n + k)x(n] = Elz(n + k)] - E[z(n)] =0
whereas for & = 0, we get the variance
R,.(0) = E[z(n)?] = o2
Combining them into a single equation, we have:
R, (k) = o26(k) (white noise autocorrelation)

Only the & = 0 term survives the sum giving the flat spectral density (over
the Nyquist interval):

Sex(f) = 02 for — (white noise spectrum)



White noise has a delta-function autocorrelation and a flar spectrum

R(k) = 628(k)
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Sample Autocorrelation

Given a length- N block of signal samples «(n), n =0,1,..., N—1, one
can compute an estimate of the statistical quantity 7, (k) by the so-called
sample autocorrelation obtained by replacing the statistical average by the
time average:

. N—1—k
~ 1
R,.(k) = N Z xr(n+ k)x(n) | (sample autocorrelation)
o n=0
fork =0,1,..., N—1. The negative tail can be defined using the symmetry

property R,.(—k) = R,,(k), so that we can write, for |[k| < N — 1,

) f\'r—l—llf.f|
~ 1
R (k) = v Z x(n+ |k|)x(n) | (sample autocorrelation)

n=~0

The rule of thumb is that only about the first 5—10% of the lags are statisti-
cally reliable, that is, 0 < & < N/10.



Sample Autocorrelation

The built-in function xcorr computes f{m(k), for =M < k< M, with any
M < N — 1, with usage,

RxXxX = Xcorr (x,M); % with M <= length(x)-1
% examples

x = 0:5;
Rxx = xcorr(x,3);
% Rxx = [14 26 40 55 40 26 14]

Rxx = xcorr(x,5);
% Rxx = [0 5 14 26 40 55 40 26 14 5 0]

with the outputs listed in the order:

-~ ~ -~

[Ropn(—=M), o Ron(=1), Rpn(0), Rop(1), -+, Rypu(M)]



Periodogram and Its Improvements

[t can be shown that for wide-sense stationary signals, E’M(k‘) is a good
estimate of 17, (k), converging to the latter for large /N (in the mean-square
sense): R

Rop(k) = Ryz(k) as N — oo

The DTFT of R,..(k) is called the periodogram spectrum and can be thought
of as an estimate of the true power spectrum S, (w):

N—-1
Sew) = Y Rua(k)e™*
k=—(N—-1)

Using the definition of R, (%). and rearranging summations, we can ex-
press the periodogram in the alternative way:

~ 1
Srz(W) = v

where Xy (w) is the DTFT of the length-N data block z(n), which can be
computed efficiently using FFTs, or, freqz,

9 . :
Xn(w) (periodogram spectrum)

N-1

k—j\.,-'(li.u') — Z I('H.)E_jwn

n=(0



Periodogram and Its Improvements

[t can be shown that for wide-sense stationary random signals the mean
of the periodogram converges to the true power spectrum S,.,.(w) in the limit
of large NV, that is,

, _ ~ . 1
Sez(w) = lim E[S;(w)] = lim E[—

N—-oo N—=oo A

Xn(w)]

Unfortunately, the periodogram is not a good estimator of the power
spectrum. It does not approximate S, (w) well, even in the limit of large
N. That is, even though the mean of the periodogram tends to S,.(w), the

periodogram itself au(w) does not, in the sense that it is not a consistent
estimator of Sy, (w), with its variance not converging to zero for large data
blocks V.

The subject of classical spectral analysis is essentially the subject of
fixing the periodogram to provide a good estimate of the power spectrum.

There are two basic techniques that improve the periodogram: peri-
odogram averaging and periodogram smoothing. The averaging method
tries to emulate the ensemble averaging operation £ |. In its simplest form,
it consists of dividing the signal into contiguous blocks, computing the or-
dinary periodogram of each block, and then averaging the computed peri-
odograms.



The method is depicted below, where there are A" blocks, each of length
N, so that the total length of the data record is L = K N. The signal is
required to remain stationary at least over the length L. The block size N
must be chosen to provide sufficient frequency resolution. Denoting the ith

block by z;(n),n =0,1...., N — 1, we compute its ordinary periodogram:
~ | .
Si(w) = v | X (w )\ =12 K
ey
block x; block x» .o block xg
Si(w) SH(w) se Sx(w)

where X;(w) is its DTFT:

~ Xa(@) + [Xa(@) + -+ + [Xie(@)]7]




Periodogram and Its Improvements

[t can be shown that g( w) is a good estimator of S, (w). with the (mean-
square) error between the two decreasing like 1/ K, for large K. The pe-
riodogram smoothing method has similar performance, and is described in
more detail in project-4.

There are two basic shortcomings with such classical spectral analysis
methods: One is that to achieve high statistical reliability, a large value of i
must be used, which implies a long total signal length L = K'/N. Such long
blocks may not be possible to obtain in certain applications. The second
1s that even 1f a long data record could be measured, it may not be usable
because the signal may not remain stationary over such long periods of time,
as for example, in speech.



Periodogram and Its Improvements
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Filtering of Random Signals

In designing filters to remove noise, it is necessary to know the effect
of filtering on the autocorrelation function and on the power spectrum of a
random signal.

Suppose the input to a strictly stable filter H (=) with impulse response
h(n) 1s a wide-sense stationary signal x(n). Then, the corresponding output
y(n) will also be a wide-sense stationary random signal:

y(n) = Z h(m)xz(n —m) x(n) — H(z) — y(n)

It can be shown that the power spectrum of the output is related to that of
the input by:

Syy(w) = |H(w)|2‘?ﬂ(w)

Thus, the input spectrum is reshaped by the filter spectrum. A simple way
to justify this result is in terms of periodograms. The filtering equation in
the z-domain is Y(z) = H(z)X(z), and in the frequency domain Y (w) =
H{w)X(w). It follows that the output periodogram will be related to the
iput periodogram by a similar equation as,

1

i 1
Y (w)]* = [H(w)[-

N

X(w)?

- -



Filtering of Random Signals

Applying this result to the special case of a white noise input with a flat
spectral density S,,(w) = o2 gives

byg |H I

Similarly, in z-transform notation,

Syy(2) = H(z)H(z" "o,

where we replaced H(w) = H(z) and H(w)* = H(z7'). the latter fol-
lowing from the fact that h(n) is real-valued. Indeed, with = = ¢/ and

»—1 — -* — ¢7J% we have:

Z h(n _-f’“”” Z h(n)e?™ = H(\:_l)

The filtered noise y(n) is no longer white-noise. Its power spectrum ac-
quires the shape of the filter’s spectrum. Its autocorrelation function i1s no
longer a delta function.



Filtering of Random Signals

A measure of whether the filter attenuates or magnifies the input noise is
given by the variance of the output Ji:

; T dw T . dw
= [ swerse=at [ 1P

™

which can be written in the form:

2 s
o dw ‘
NRR = 2 = / |H ()| — = E h*(n) | (noise reduction ratio)
_ T
T

2 L]
O-I' m

A necessary assumption for the derivation of these results is that the filter
h(n) be strictly stable. The stability of /(n) is required to ensure that the
stationary input signal x(n) will generate, after the filter transients die out,
a stationary output signal y(n).
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Rectangular
Hamming
Kaiser
DPSS
Chebyshev

W(w)
e
3 ?B 1
sidelobe level R —\ — g
L 3 dB width Aw 4:
5.
IR
20N e

- Wy Wy first null
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W(w)

Rectangular window DTFT:

t

3dB

T |
sidelobe level ¢
N

|
o]l

3 dB width Aw

V\/\M

o first null

-

—ijLw
Hf(w) _ 1 — € jlr _ Slll( L/Q) e—jw(L—l)/Q
1 — e v sin(w/2)
W(w)| [sin(wL/2)| | sin(7x) 27
W(0)| |Lsin(w/2)| |Lsin(zxz/L) T L
for L > 10,

sin () sin(rx)  sin(mr) ,
F(r) = = — = sinc(x
() Lsin(mz/L) L-7x/L T inc(x)



mainlobe

relative

sidelobes causing Aw R =13 dB = sidelobe
frequency leakage " il level
-
-t 2 0 2w 4m .. 0T W

L

L L



3-dB frequency is obtained by solving the condition,

2
=  F(r)=

2| =

'H-’ (w) :% =  Fz) =

W (0)

% solved with MATLAB’'s fzero function
x3 = fzero(@(x) sinc(x)-1/sgrt(2), 0.4);
& x3 = 0.443, 2+*x3 = 0.886

3-dB frequency and 3-dB width,

_ 2T 432 \ussap = 2wy = 0.886 27
Wy = = 0.44: =  Awigg = 2ws = 0.8
UL "L B L

sidelobe level is determined by finding local maximum next to mainlobe,

% solved with MATLAB’s minimization function
xside = fminbnd(@(x) -abs(sinc(x)), 1,2);
% xside = 1.4303
then, evaluate F(xslide) in dB
= -20*1logl0(abs(sinc(xside)) ) ;
= 13.2615 dB

o

R
% R



Hamming window DTFT with odd length, L = 2M + 1,

w(n) = 0.54 — 0.46 cos (”’”) Con=0.1.....2M

4

w(n) = 0.54 — 0.23 ™M _ () 23 ¢=Imn/M

1[_.’[_..?@_;) = .54 Weeet () — 0.23 Wieeq (w . 3:,}) — 0.23 Wt (yd n % )
1 — o—JLw mnl(wl/ _ -

W (w) = l—e - 511‘1( L/2) —iwM L : 1
I —e ¢ sin(w/2) 9

with approximate broadening factor and sidelobe level,

.. 21h
ﬂu.,’gd]g — ().886 7
0.98
b=147+ N ~ 1.5

R =~ 40 dB
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The symmetric Kaiser window 1s based on the following Fourier transform
pair in continuous time,

27 —
0 202 — 120
040 — 70! —70

sinh [\/T[?!?g - T,:?!?Q] /m

I [TDQ{]\/ 1 —¢2 /rg] I gt

defining the time-bandwidth product, o = 792, and sampling at some rate
fs = 1/T, assuming an integer number of samples within 7,

T0 = MT,

t=kly,, —-M<E<M

w = 27T, = digital frequency

T0f2 = MT,(? = Mw

then, the sampled and normalized symmetric window becomes,

Io [a- VI— k2 /m]
w(k) = , . M <k<M
“ In(av) -
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from the sampling theorem, the DTFT of w (k) will be the above continuous-
time transform scaled by 7, with all its replicas at multiples of f, added.
For small enough 7T, the replicas can be ignored approximately, resulting in
the scaled and normalized spectrum,

sinh [vVa? — M?w?] 27 f
7 W =
Io(a)vVa? — M2w? I

W(w) = 2M = 0T,

W(w) o sinh [va? — M2w?]

W(0)  sinh(a) vaz — M2w?

the causal version of the window is obtained by delaying the symmetric one
by M samples,

T [oz\/l ~(n— M)2/M?
Ip(a) /

w(n) = n=0,1,...,2M
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the 3-dB width and sidelobe levels can be obtained from.

Ww)  « sinh [\/ a? — M QLLJQJ

W(0) sinh(a) a2 — M2w2

see EWA/Ch.20 for computational details with MATLAB. The resulting
broadening factor and the exact relationship between o and R are:

b=0.0124R + 1.0221

R = 13.26 + 20 log,, [“”h(“)]

v

with /7 in dB — the exact relationship can be solved for « by the Kaiser-
Schafer approximation:

0, R <13.26
a=<{ 0.76609(R — 13.26)%* +0.09834(R — 13.26). 13.26 < R < 60
0.12438(R + 6.3), 60 < i < 120



The prolate window maximizes the power that resides within the mainlobe
of the window. Assuming the mainlobe is within the range of digital fre-
quencies |—w,, w.|, with w, to be determined from « and L, the minimiza-
tion criterion is,

f W (w)|?dw /27

J = = — max

f W (w)|*dw /27

n=0
w = [w(0),w(l),.. . wL-1)]"

J = “‘jT{; = max (Rayleigh quotient)

A, = S@TWeln —m) o011

m(n —m)

prolate matrix



The maximization of the Rayleigh quotient is realized by the maximum
eigenvector of the prolate matrix A, that 1s, the eigenvector belonging to the
maximum eigenvalue, say. Ag:

Aw = \gw

The prolate matrix is notoriously ill-conditioned having approximately
2LW, eigenvalues that are very near one, and the remaining eigenvalues
decreasing rapidly to zero. The following table lists the eigenvalues in de-
creasing order for the case L = 21 and W, = 0.2, so that 2LW_ = 8.4, its
condition number being, cond(A) = 5.1063x 10*¢:

/\i E )"'-i
0.9999999999851 7736000 111 0.00131552671490021500
0.99999999795514627000 121 0.00007986915605618046
0.99999987170540139000 131 0.00000365494381482577
0.99999517388508363000 14 1 0.00000012731149204486
0.99987947149714795000 151 0.00000000336154097643
(.99792457099956200000 16 1 0.00000000006621668668
0.97588122145542644000 171 0.00000000000094327944
0.83446090480119717000 181 0.00000000000000920186
0.45591142240913063000 191 0.00000000000000004034
0.11887181858959120000 20| 0.00000000000000001958
0.01567636516215985600

Et:ooﬂcsuqawwn—tcw-




These were generated by the following MATLAB code:

= 21; We = 0.2;

= 0:L-1;

2+«Wexsinc (2+*We*n) ;
= toeplitz(f, f);
lambda = svd(A) ;

=T I T
[

The eigenvectors of the prolate matrix are referred to as the discrete prolate
spheroidal sequences (DPSS).

the approximate relationship between W, and the Kaiser o« works well over
the range 14 < R < 120 dB:

- 0.95a/7+0.14
— 7
However, using the predicted Kaiser 3-dB bandwith is an alternative that

also works well for the DPSS window, and can be used in project-4. The
window samples can be computed using the built-in function dpss.

W,

w = dpss (L, alpha/pi, 1); % window w(n), Lxl wvector
w = w/max(w) ; % normalize to unity maximum



Most windows have largest sidelobes near the main lobe. If a window
1s designed to achieve a minimum sidelobe attenuation of i dB. then typi-
cally I will be the attenuation of the sidelobes nearest to the mainlobe; the
sidelobes further away will have attenuations higher than .

Because of the tradeoff between mainlobe width and sidelobe attenua-
tion, the extra attenuation of the furthest sidelobes will come at the expense
of increased mainlobe width. If the attenuation of these sidelobes could
be decreased (up to the level of the minimum F£), then the mainlobe width
would narrow.

[t follows that for a given minimum desired sidelobe level R, the nar-
rowest mainlobe width will be achieved by a window whose sidelobes are
all equal to R. Conversely, for a given maximum desired mainlobe width,
the largest sidelobe attenuation will be achieved by a window with equal
sidelobe levels.

This “optimum™ window is the Dolph-Chebyshev window, which is con-
structed with the help of Chebyshev polynomials. The mth Chebyshev poly-
nomial 7, (x) 1s:

Trn(z) = cos(m c-.c}f_-;_l(;r))

If || > 1. the inverse cosine cos™!(z) becomes imaginary, and the ex-
pression can be rewritten in terms of hyperbolic cosines:

T (x) = c-.osh(-m. C'.t}:‘sl'l_l(;l.‘))



Setting & = cosf, or § = cos™! (), we see that T, (x) = cos(m#). Using
trigonometric identities, the quantity cos(m#) can always be expanded as a
polynomial in powers of cosf. The expansion coefficients are precisely the
coetficients of the powers of & of the Chebyshev polynomial, e.g.,

cos(06) = To(x) =

cos(16) = cos b Ti(x) ==z

cos(20) = 2cos*f — 1 = Ty(xr) =22 -1
cos(30) = 4 cos* ) — 3 cosb T3(x) = 42 — 3
cos(46) = 8cos? # — 8cos* H + 1 Ty(x) =8zt — 8x% + 1



For || < 1, the Chebyshev polynomial has equal ripples, whereas for
|x| > 1, it increases like +"". Moreover, T}, () is even in x if mn is even, and
odd in x if m i1s odd. The figure below depicts the Chebyshev polynomials
To(x) and Ty ().




The Dolph-Chebyshev window is defined such that its sidelobes will cor-
respond to a portion of the equi-ripple range |z| < 1 of the Chebyshev
polynomial, whereas its mainlobe will correspond to a portion of the range
r > 1.

For either even or odd L. the window spectrum W (w) can be written
in general as a polynomial of degree L — 1 in the variable u = cos(w/2).
Indeed, we have for the mth terms:

[ ':.-Lf:l /
cos(mw) = cos (2-??1.3) = To,(u)

cos((_-m —1/2)w) = cos ((2??1 — 1)%) =Tom_1(u)

Thus in the odd case, the summation of such terms will result in a poly-
nomial of maximal degree 2M = L — 1 in the variable u, and in the even
case, 1t will result into a polynomial of degree 2AM — 1 = L — 1.

The DTFT of the Dolph-Chebyshev window is defined by the Chebyshev
polynomial of degree L — 1 in the scaled variable x = xq cos(w/2), that is,

W(w) = Ti(@), @ =zgcos ()




The relative sidelobe attenuation level in absolute units and in dB is de-
fined in terms of the ratio of the mainlobe to the sidelobe heights:

I"':I"i]le‘l] n _
R, = T R =20log,,(R,). R,=10%/20
'V side
Because the mainlobe peak occurs at w = 0 or r = x4, we will have

Winain = 17_1(7¢), and because the sidelobe level is equal to the Chebyshev
level within || < 1, we will have W4, = 1. Thus, we find:

R, = Tp1(x0) = cosh((L — 1) COSh_l(;r{;,))

which can be solved for x( in terms of ?,,:

l cosh ' (R,)
Ig = COS
Lo COSI1 I —1




Once the scale factor ( is determined, the window samples w (7 z..) can be
computed by constructing the z-transform of the DTFT from its zeros and
then doing an inverse z-transform. The L — 1 zeros of 77, _{(x) are easily
found to be:

:— 1/2)m
.T'L_l(;lf) p— COS((L' J_) cOS (l)) = () = T = COS ((2 / ) l)

L—1
fore =1,2,..., L — 1. Solving for the corresponding frequencies through
Ti = T COS M/2) we find the DTFT zeros:
) a1 Ly Jws - 1« -
w; = 2 oS — |, 2 = el o =1.2.....L—1
€To

The symmetric z-transform of the window is then constructed in terms
of its zeros:



The inverse z-transform of W (z) are the window coefficients w(n). The
typical MATLAB code is,

L1 = L-1; % number of zeros

Ra = 107 (R/20) ; % sidelobe level 1n absolute units

x0 = cosh(acosh(Ra)/Ll); % scaling factor

1 = 1:L1;

xi = cos(pix(1-0.5)/Ll1l); % L1 zeros of Chebyshev polynomial

omi = 2 % acos(xi/x0); % L1 zeros 1n omega-space

zl = exp(j*omil) ; % L1 zeros of W(z) polynomial

w = real (poly(zi)); % zeros-to-polynomial-coefficients
% see also the more accurate poly?2

% in the EWA toolbox

The window coefficients resulting from this construction can be normalized
to unity maximum.



The 3-dB frequency wj; is defined by the half-power condition:

T (x Ra-

NCERNG

| R
cos;h(( L —1)cosh™( ) = o
NG

Solving for 3 and the corresponding 3-dB angle ws, 13 = x4 cos(ws/2),

osh™ (R, /2 T
Ty = cosh (CUC’ F /\f)) ._ Wy = 2cos” ! (‘1_3)

L‘ — 1 o

From w3, one calculates the 3-dB width, Awsgg = 2ws. However, the
following approximate relationship works well for the broadening factor,
over the range 13 < I < 180 dB, and may be used in project-4,

b= 0.65+0.0195R — 0.00005 ]?
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In summary, the following broadening factors may be used in project-4 for
the various windows:

Rectangular b=1

)
|

Hamming b=147+0.98/L
Kaiser b=0.0124R + 1.0221
DPSS b=0.0124R 4+ 1.0221

Chebyshev b= 0.65+ 0.0195R — 0.00005 R*

o 2mh ' o 'Sb
Awsys = 0.886 ]i = Afug = 08867
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windows, win)

— Kaiser
--- DPSS

- -~ rectangular
—— Hamming

—— Chebyshev

T
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Rectangular Window
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Hamming Window
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Kaiser Window
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Prolate Window




Chebyshev Window
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- N »  window
- _r.f{]q_ ““a‘f_’i
le— [) — f”fﬁfrﬁ -
le— ) — - _xgﬂh““m
calculate
periodograms
Y
average

periodograms

spectrum estimate

In project-4, two periodogram averaging methods
are considered:

a) dividing into non-overlapping blocks, D =N
b) Welch method, 50% overlapping, D = N/2

both cases can be implemented conveniently with
the help of the built-in function buffer

Its usage Is explained with some examples below




»

o0 0 Jd° J° o°P oP > o0 o°
]

o®

10:2:46; N

further notes on windows and project 4

6;

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

buffer (x,N)

10
12
14
16
18
20

22
24
26
28
30
32

% non-overlapping, incomplete blocks

34 4
36
38
40
42
44

O O O O O o
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x = 10:2:46; N = 6;

o°

X =
% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

[X,~] = buffer (x,N) % non-overlapping, complete blocks

o®

X =
10 22 34
12 24 36
14 26 38
16 28 40
18 30 42
20 32 44

o° o o° o°P oP

o®



»

o0 0 Jd° J° o°P oP > o0 o°
]

o®
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10:2:46; N = 6;
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
buffer (x,N,N/2) % 50% overlapping, delayed by N/2

10
12
14
16
18
20

16 22 28 34 40
18 24 30 36 42
20 26 32 38 44
22 28 34 40 46
24 30 36 42 0
26 32 38 44 0



»

o0 0 Jd° J° o°P oP > o0 o°
]

o®

10:2:46; N

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

buffer (x,N,N/2, 'nodelay')

10
12
14
16
18
20

16
18
20
22
24
26
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6;

22
24
26
28
30
32

28
30
32
34
36
38

34
36
38
40
42
44

%

50% overlapping, no-delay

40
42
44
46



further notes on windows and project 4

x = 10:2:46; N = 6;

o°

X =
% 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

[X,~] = buffer(x,N,N/2, 'nodelay') % no-delay complete blocks

o®

X =
10 16 22 28 34
12 18 24 30 36
14 20 26 32 38
16 22 28 34 40
18 24 30 36 42
20 26 32 38 44

o° o o° o°P oP

o®



