DSA — March 22, 2021

Topics: STFT review, DCT, IDCT, fast DCT, data compression with DCT, MDCT,
IMDCT, TDAC property, Pricen-Bradley windows, data compression with MDCT.

| 2N > - window

X=| _——7 X9 T -4

MDCT
compress“f quantize store/retrieve MDCT /TDAC
TX/RX signal compression system

A |

IMDCT
r

y=[ _——"Tyo ~~——_ window + overlap-add
—N—> =7y T~—_
—N—> = Ty T——_




STFT O&S — Sect. 10.3 & 10.4

The short-time Fourier transform (STFT) is defined by dividing the input
signal z(n) into successive overlapping length-/V blocks, shifted relative to
each other by 7 samples (the hop size), then windowing each block by an
appropriate length-N window, w(n), and taking the DTFT of each block,
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where i < N and the N time samples within the mth segment being trans-
formed are,

Tm(n)=x(mR+n)w(n). n=0.1,..., N -1



Tm(n)=xz(mR+n)wn), n=0,1,...,] N —1

The discrete-frequency STFT is obtained by replacing the above DTFTs by
N-point DFTs, that is, evaluating them at the N DFT frequencies,
2k

N

Thus, we set, X, = X(wp.mR). for, k = 0.1,....N — 1, and. m =
0,1,..., M, where the total number of segments is M + 1,

E=0,1,....N —1

W =

N-1 N-1
(STFT) | Xppm = Z z(mR + n)w(n)e 9" = T(n) ™79k (1)
n=>0 n=>0

k=01,... N—1, m=01...,M



Given an input signal of length L., thatis, x(n), n = 0.1,..., L, — 1,
the number of segments can be calculated as follows, and then. prior to
calculating the STFT, the signal x(n) can be extended by padding enough
zeros at its end until all frames have length NV,

M = floor [ 2= en). 0<n<L,—1
It = Tex(n) =4 (2)
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We will assume that this extension has been done and denote the extended
signal by z(n).



The STFT can be visualized as an N x (M + 1)—dimensional matrix whose
columns are the N-point DFTs of the time segments z,,(n),

T 1, (0) 7]
Xirames = [X0, X1, oy Xar], Xy = I'm:(l)

(N = 1)_
X = [DFT(xo). DFT(x), ..., DFT(xy)]

In MATLAB, all the DFTs can be computed with a single FFT call,
X = FFT(Xframes) = [F‘F‘T(\Xn). FFT(x1), ..., FFT{’XM)}

Assembling the overlapping frames mto the frame matrix, Xgmes, can be
done conveniently with the help of the buffer function.

But prior to calling the fft function, each column of Xg,mes must be win-
dowed by the chosen window function w(n) — this operation can also be
done efficiently in MATLAB, as we discuss below.



ISTFT, OLA Reconstruction

The inverse STFT can be obtained by performing the inverse DFT, recon-
structing the mth segment,

, , 1 i o
r(mR+n)w(n) = x,(n) = ~ Z Xpm €’k (3)
k=0
n==0,1 ..., N—1, m=0,1,....M

However, solving for z(mR + n) requires division by w(n), which is typi-
cally very small near its end points, and this would cause the amplification
of even small amounts of noise that might be present.

For this reason, a better reconstruction procedure is by the overlap-add
(OLA) method, that is, aligning the inverse DFTs x,,,(n) according to their
absolute timing, starting at n = mAR for the m segment, and then adding
them up,

y(n) = Z Tn(n —mR)| (ISTFT. OLA reconstruction) (4)
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y(n) = Z rm(n—mA)| (ISTFT, OLA reconstruction)
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It can be shown (see O&S). that for most windows and many practical
choices for R, the signal y(n) is equal to x(n) up to a constant factor that
depends on the window and .

But even if such window property, known as the constant-overlap-add
(COLA) property, is not completely valid, one can still reconstruct x(n)
exactly by noting that y(n) is related to z(n). by y(n) = z(n)w(n). where

w(n) 1s the overlapped-added version of the window,

o0

w(n) = Z w(n —mR) (35)

m=—0>2C

Thus, even if w(n) is not constant in n, we can still solve for z(n) by,

y(n) = x(n)w(n) = Z Tm(n —mR) =
Z Tr(n —mR) (6)
0 () I —
Z w(n —mR)
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Since w(n) is periodic in n with period R, it can be expanded in its R-point
discrete Fourier series,

oo , R-1
1 - 27T
"' / — an(n — R — I)[r 'wr L JWe Tl . Wy =
w(n) m:Z_OC w(n —mR) 7 ; (wy)€ B
(7)

N-1
W(w,) =Y w(n)e ™ =DTFT of w(n) evaluated at w = w,

n=>(0

Thus, the condition for the COLA property is that
Ww,) =0, r=1,2,..., R—1

so that only the » = 0, or w, = 0, term is present in Eq. (7), resulting into
the constant value,
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The following steps are carried out:

a. The input signal x(n) i1s extended to length, ., = MR, + N, as in
Eq. (2). and the output signal y(n) is initialized to zero over its ex-
tended length. L, = M R, + N.

b. The STFT Xy, of z(n) 1s computed with analysis hop size I,

N-1
X = 3 _ 2(mBy + n)w(n)e ="
n=>0
O<E<N-1, 0<m<M

(8)

c. Next, Xy, ,,, 1s modified according to some transformation, such as fil-
tering, gain control, or phase modification as in the phase vocoder,
resulting in an output STFT, say, Y} ,,.



d. Then, the inverse STFT of Y} ,,, 1s computed, and each segment is win-
dowed by another length-N window, which is usually the same as the
analysis window w(n).

=

1
Yim AUk 0<n<N-—-1 (9)
0

1
N

Ym(n) = w(n) -

x~
I

e. The resulting windowed segments are overlapped-added with the syn-
thesis hop I to obtain the synthesized transformed output y(7n),

o0

y(n) = Z Um(n —mRy) (10)

m=—0oC



Computation

The STFT can be computed efficiently in MATLAB with a single FFT as
follows. Assuming that z(n) has been extended to length, L, = M R, + N,
then with the help of the built-in MATLAB function buffer, the signal = (n)
can be rearranged into an N x (M + 1) matrix whose columns are the time
frames, Nfames = [XD VXL . XM}, 1.€.. Xfames(72,m) = T (n2).

Then, the N-point FFT of that matrix will generate, after windowing, the
FFTs of all the columns, resulting in the STFT matrix X,

NXfames = buffer (X* N, N—-R,. 'nodelay ’)
W = repmat (w. 1. M + 1) = window (STET) (11)
_.)f = fft (I'I‘{*’_}{ﬁameﬁ. _L\T)

where w 1s the N-dimensional column vector of the chosen window.

w(0) T
w(l)
w= | w(2) = W= [w. W, ..., w]
M + 1 columns
L w(N —1) ]

and W is its replication into an N x (M + 1) matrix so that it can be multi-
plied point-wise by Xfames.



Once X is computed, it may be subjected to a transformation resulting in the
output STFT matrix Y, which also has dimension N x (M + 1). Its inverse
can be carried out by a single IFFT call, resulting in the output matrix of
time-frames,

Yeames = ifft(}”'. N)

ISTFT) (12
U (1) = Yames(72, m) = nth element of mth column (' ) (12)

The ISTFT overlap-add operation of Eq. (4) may be implemented efficiently
by the following iteration that reconstructs y(n) segment-by-segment while
windowing,

form=0.1.2,....M
forn=0,1,.... N —1 (OLA reconstruction)
y(mRs +n) =y(mBRs+n) + ym(n)w(n)

(13)
where the n-loop can be vectorized and we must initialize y(n) to zero, that
s, y(n)=0,forn=0,1,..., Ly —1,where, Ly = MR, + N.



For example, see the following MATLAB code segment into which the win-
dowing operation has been added, with the column vector w representing the
N-dimensional window,

% define R, and, extract N,M from Y,

% define w = length-N column vector of window samples
N = size(Y,1);
M = size(Y,2) - 1; % Y is Nx(M+1)
L = R*M + N: % length of output v(n)
v = zeros(L,1l); % pre-allocate
n = (1:N)"'; % column-vector
for m = 0:M
v(im*R + n) = y(m*R + n) + w.*Y(:,m+1);

end



Project 7 — Data Compression with DCT
MDCT and Time-Domain Aliasing Cancellation

The purpose of project-7 is to study the data compression properties of the
discrete cosine transform (DCT), implement a DCT compression system in
MATLAB, and apply it to audio and image data.

In addition, a compression system based on the modified DCT (MDCT)
and its inverse (IMDCT) 1s studied and implemented in MATLAB, includ-
ing the related time-domain aliasing cancellation (TDAC) property, which is
key in most current audio compression systems, such as MP3, AAC, WMA,
Vorbis, and others.

The original reference on the DCT is:

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,”
IEEE Trans. Computers, C-23, 90 (1974).

See also, N. Ahmed, “How I Came Up With the Discrete Cosine Trans-
form.” Dig. Sig. Proc. 1,4 (1991).

For a more complete set of references and reviews of data compression
methods, see the articles in the zip-file of project-7.



DFT

We recall the N-point DET of an /N-point signal,

In _)f[} ]
X = — X — )
N1 ] _AXN— 1.
or, component-wise,
N—1
(DFT):  Xp =) e 2mk/N,
n=0
N—1
1

(IDFT): =z, =

o
IDFT L
— X=

| TN—1_
EF=0,1,....N—1
n=01..... N—1



and 1n matrix form. define the N x /N symmetric DFT matrix,

Ay, = e 2mikn/N. kF=0,1..... N —1

satistying the unitarity and inversion properties,

1
—AAT =y = Al=
N : N

so that the forward and inverse DETs can be expressed compactly as,

1

T

A™X

The DCT 1s a similar orthogonal transform that can be viewed as a
real-valued version of the DFT.



Data Compression with DCT

The DCT takes as input a length-/N real-valued signal vector, X, and pro-
duces a length-N real-valued vector of DCT coefficients, C. The inverse
DCT reverses the process. recovering the original signal vector,

[ Iy ] B C'D ] B Iy ]
* - Iy
1 DCT Ch IDCT 1
X = _ — (C= , — X = _ (1)
| TN —1 _C'N—l_ | IN—1 ]

In a typical DCT-based data compression system, a large fraction (e.g.,
80-90%) of the DCT coefficients C}, are dropped. retaining only a few of the
most significant ones, which are then quantized and stored or transmitted.

The signal recovered from the few retained DCT coefficients—while
not identically equal to the original one—is close enough to the original to
be perceptually indistinguishable from it.

Such process is referred to as lossy compression since the recovered
signal is slightly different from the original one as, for example, in MP3
audio or JPEG images. In audio and image applications, the DCT coefficient
quantization process takes into account the psychophysical properties of the
hearing or visual system, and is beyond the scope of project-7.



A simplified DCT compression system is shown below in which a long input
signal is divided into contiguous length-/N' blocks or frames, the N-point
DCT of each frame is computed and compressed, then, the corresponding
inverse DCTSs of the frames are computed and the recovered signal blocks
are pieced together to form the output signal.

X =

simplified DCT
compression system

« N Nl N ——»]
X0 X1 X2
DCT analysis
v .
y - store/retrieve
compress / quantize TX/RX
¥
IDCT synthesis
Yo Y1 Y2
~— N e N e N ——>




To avoid possible artifacts that may be introduced by the blocking process,
a more refined approach divides the input signal into overlapping blocks.
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Such system is based on the modidied DCT (MDCT) and divides the input
into blocks that are 50% overlapping, then windows each block, and calcu-
lates its MDCT, compresses the MDCT coefficients, and takes the inverse
MDCT, windows the resulting blocks again, and finally overlaps and adds
the results.

The window functions must be chosen properly (i.e., satisfying the so-
called Princen-Bradley conditions) so that the overlap/add operation cor-
rectly implements the time-domain aliasing cancellation (TDAC) property
that allows the faithful reconstruction of the input signal.

MDCT-based compression systems are used in current audio compres-

ston formats. such as MP3. AAC., WMA. Vorbis. and others.



DCT

There exist eight versions of the DCT, but the type-2 is the most widely
used and 1s the default version in MATLARB’s dct function and can be im-
plemented efficiently using an FFT. The type-2 DCT is defined as follows,

N-1
Cl =Y, cos (\A (n + %)) C k=0.1,...,N—1

n=0

and 1ts inverse.,

~ ."I.}'L
Tn _—Cn—F—ZCkCUH( ?H— )) n=20,1,....N -1

The DCT pair satisfies the following Parseval-like identity,

N-1 1 N-1
Z r? = v l( 542 C f] (Parseval)
n=0 o k=1

DCT
IDCT




In MATLAB. and other literature, a normalized version of the DCT coeffi-
cients is used, defined as follows, where 0;. denotes the Kronecker delta,

D= 10 where s, — \/\ (6r+1)., k=0.1....N—1 (2

Sl 2
so that,
_ N
so = VN, se={/5. k=12...] NV — 1

1 2
Do=1/=Co, Di=y/=Cy, k=1,2... N—1
VN TP YN

With this definition. the normalized DCT and its inverse read as follows,

1 «— k
D, = — T, COS (% (n- — %)) . k=0.1.....N-=1| (DCT)
Sk A
=0
N-1 -
r, — Dy, cos (L (-n + %)) . o n=01.....N—=1| (IDCT)
Sk :\
k=0
N1 N-1
— D?| (Parseval)
n=0 k=0

DCT
IDCT




The above relationships can be understood more simply by expressing them
in matrix form. Let us define the N x N matrix of DCT coefficients by its
kn matrix element,

7k k=0.1,... N-1
'&“:“*(N(”+ﬂ>' n=01,... N-1

Then. the forward DCT and its inverse can be written in matrix form.

C=Bx = x=DB"'C

Define the diagonal matrix of the scale factors s,

5o 00 -0 0T

0 s¢ 0 --- 0

S = dlﬂg([én S1eevnys S N—l]) — 0 0 S59 v ()
i 0 0 0 ... SN—-1_

Then, it can be shown that the matrix B satisfies the following orthogonality-
like property from which its inverse can be determined,

BBT — *5? — dlﬂﬁ([b[} 5% ...... S :2;\,".*_1])
B—l BTb 2 BT dlﬂg([ _E._. C e —S'Erg_l])



Thus, the forward and inverse DCTs can be written in the following matrix
forms, for the un-normalized and normalized versions, since, D = S~ C,

C = Bx D=5!1Bx= Ax DCT
x = BTSs2C x=BTs'p= ATp| | IDCT

where we defined the rescaled DCT matrix,

A=5S"'B | (DCT matrix)

which is orthogonal. that is,
AAT =1y = A=A
Indeed, we have from the orthogonality of B,
AAT = s71BBT S~ = 971925~ = [y

The normalized DCT matrix A can be computed for any NV by the following
one-line anonymous MATLAB function:

A = Q(N) sqgrt(2/N) * ...
[ones (1,N) /sqrt(2); cos(pi*(1:N-1)'*((0:N-1)+1/2)/N)];




FFT-based fast DCT

Although the above matrix formulation is very efficient in MATLAB for
moderate sizes (1.e.. N < 1024), there is an even faster implementation
based on computing the N-point DCT vector C from a related 2/V-point
FFT.

The computational steps are summarized as follows. Define the ex-
tended signal and DCT column vectors of length-2/V obtained by append-
ing to x its reversed version, and similarly, appending its negative reversed
version to the DCT,

A ; 1 ; ; F ; T
y= [;I?[}. i T EN—1s TN—1y ey r1. .I‘-D]
C™* = [Cy,Cy. ..., Cn_2.Cn_1.0,—Cn_1,—Cn_o,....—C4]"

Then, it can be shown that the 2/ N-point DFT of y 1s related to the extended
DCT vector by,

V), = 2edmk2N et e — 01, ... 2N — 1, o,

1 _on __
O = se ™2y k=0,1,...,2N -1



FFT-based fast DCT

where we have the 2N -point DFT pair,

2N -1
Y=Y ye N =01, 2N -1
n=>0

1 2N—-1
S s 2njk/2N N - IN
Un = 5 Z@ Yy e Con=0,1,....2 N — 1

This leads to the following efficient computational algorithm for the DCT:

(a) extend the data vector x to y as above
(b) compute the FFT of y, thatis, Y3, A =0.1,....2N — 1
(c) construct the extended C* vector as above, and

(d) retain the first V elements, C, = C7*, kF=0,1, ..., N -1

(e) renormalize the result, D), = C} /s, k=0.1,... . N —1

For the inverse DCT, the above steps are entirely reversible, that is, starting
with D, k= 0.1,..., N — 1. first undo the normalization scale factors,
Cyr = 5Dy, then form the length-2/NV extended vector C’;“. and evaluate
the DFT values Y., then, perform an inverse 2 N-point FFT to recover y and
retain its the first N elements, z,, = y,.n =0.1,.... N — 1.



Simplified DCT Compression System

To clarify the operations in the simplified DCT compression system shown
below, and the possible methods of compressing the DCT coefficients, we
discuss a small example. implemented in MATLAB.
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X= X X X9
DCT analysis
¥ ) .
S5 / o store/retrieve
compress / quantize TX/RX
¥
IDCT synthesis
Y= Yo Y1 Y2

-~ N an N an N —>



Define a length-40 signal and divided it up in 4 frames of length N = 10,
with the help of the buffer function. and compute the DCT of all frames,

()

= 40;

t =

= 10;

buffer (x,N) ;

dct (X) ;

(0:L-1)/L;
sin (10*t.*2) + 2*t;

o°

length L=40

frame length

10x4 matrix of frames
10x4 matrix of DCT coefficients

O OO OO OO O O
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We consider two methods of compression. In method-1, we pick a compres-
sion factor, 7 < 1, which defines the number of DCT coefficients to be kept
from each length- N frame,

. ; N,

N, =round(r/N), Factual = N (3)
then, sort the absolute values of the DCT coefficients in each column in
descending order, and keep the highest NV, of them, setting the rest of the
coefficients to zero. Because of the rounding process, the actual realized
compression factor, 7w, may be slightly different from . The sorting and
construction of the new DCT coefficient matrix could be done as follows,

M = size(D,2); % no. of frames

Nr = round(r*N) ; % no. of kept coefficients per frame

[~, Ir] = sort(abs(D),'descend'); % sort column-wise, descending order

Ir = Ir(1:Nr,:); % Ir = Nr x M matrix of sorting indices

C = zeros(size (D)) ; % initialize kept DCT coefficients

for m = 1:M % rebuild DCT from the kept coefficients
Dr(:,m) = D(Ir(:,m),m); %$ Dr = Nr x M matrix, sorted coefficients

C = new DCT coefficients

o°

C(Ir(:,m), m) = Dr(:,m);
end




[n a storage/retrieval or transmitting/receiving system, one would store or
transmit both the index and coefficient matrices. /... ), in order to be able
to re-position the kept coefficients in their original order, therefore, the com-
pression factor would be, 27, in this case. For example, with, » = 0.4, we
have the sorted coefficients and sorting indices,

Ir | Dr

____________ I ) 0 ) 0 0 00 ) 0 0 0 5 0 05 00 5 0 05 0 ) 0 05 ) ) ) 05 ) ) ) (05 ) ) ) 5 ) o e e

1 1 1 1 | 1.2623 4.9797 2.6349 6.5811

2 2 2 3 | -0.9433 -0.7086 1.2451 -1.4116

3 3 3 2 | 0.1282 -0.3166 0.4891 -1.2616

4 5 5 5 | -0.0959 -0.0736 0.1147 -0.2160

X D

0 1.0851 1.5985 0.8883 1.2623 4.9797 2.6349 6.5811
0.0562 1.2362 1.4259 1.2766 -0.9433 -0.7086 1.2451 -1.2616
0.1250 1.3833 1.2163 1.7165 0.1282 -0.3166 0.4891 -1.4116
0.2062 1.5205 0.9861 2.1495 DCT -0.0959 -0.0124 -0.091e6 0.1412
0.2998 1.6408 0.7575 2.5086 == 0.0286 -0.0736 0.1147 -0.2160
0.4056 1.7365 0.5577 2.7305 -0.0310 -0.0039 -0.0281 0.0275
0.5231 1.7996 0.4164 2.7699 0.0108 -0.0280 0.0432 -0.0768
0.6515 1.8224 0.3622 2.6134 -0.0125 -0.0016 -0.0111 0.0097
0.7894 1.7986 0.4175 2.2892 0.0041 -0.0106 0.0163 -0.0286
0.9349 1.7241 0.5943 1.8686 -0.0035 -0.0004 -0.0031 0.0026




In method-2, we pick a threshold factor, 7y, < 1, which defines a thresh-
old value Dy, for the DCT coefficients below which the coefficients are
discarded, and construct a new DCT matrix that only has coefficients such

that, | D| > Dy, where,

Dthr = T'thr ° |D|max (‘1')

This method can be implemented by the example code:

Dthr = r thr * max(max(abs(D))) %

= find(abs (D) < Dthr); %
= D; %
I) =0; %
= l-length(I)/ (N*M) ; %

DCT threshold

indices of DCT coeffs to be zeroed
initialize with C = D

discard coefficients below Dthr

realized compression factor

ra = length(find(C)) / prod(size(C)) ; % alternative calculation




Applying the two methods to the DCT matrix D of the above example, we
obtain the following new DCT matrices C', where we used, » = 0.4, for
method-1, and, ry, = 0.014, for method-2 (chosen such that both methods
achieve the same actual compression ratio, raea = 0.4.)

method-1 C

1.2623 4.9797 2.6349 6.5811
-0.9433 -0.7086 1.2451 -1.2616
0.1282 -0.3166 0.4891 -1.4116

-0.0959 0 0 0 -0.0959 0 0 0.1412
0 -0.0736 0.1147 -0.2160 0 0 0.1147 -0.2160
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

We note that for method-1 there are, N, = rN = 0.4 - 10 = 4, coefficients
per frame, but that number is variable in method-2 for which the computed
threshold was, Dy = 7| D|max = 0.014 - 6.5811 = 0.0921, with all coeffi-
cients with magnitudes less than that set to zero.




The actual compression factor. representing the fraction non-zero DCT
coefficients, was the same in the two cases. The final reconstructed output

is finally obtained by performing an inverse DCT on €' and concatenating
the resulting frames, with the results plotted below.

Y = idct(C); % IDCT of all frames
y = Y(:); % concatenate frames
y = y(1:L); %

make x,y lengths equal (in case buffer had extended X)

plot(t,x,'r-', t,y,'b."); % plot original and compressed signals

method-1, N =10, r =04

method-2, N = 10, Tehr = 0.014
T
3 ' ' ! ' 3 T T T T
2 B T 2 » 4
1r . 1F 4
{}' i Dl .
original original
=  recovered =  recovered
_1 1 1 1 I _1 1 1 1 I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t




The approach also works with images, using a 2D-DCT (which is equivalent
to taking the 1D-DCT of each column followed by the 1D-DCT of each row
of the image). For example. try the following MATLLAB code based on the

documentation of the det2 function,

X = imread('cameraman.tif') ;

D = dct2 (X);

Dmax = max (max (abs(D))) ;
Dth = 10;

rth = Dth/Dmax;

C =D;
C(abs(D )< Dth) = 0;

ra = length(find(C)) /prod(size(C))

Y = idct2(C);

figure; imshowpair (X,Y, 'montage')

o® o0 o° o°

o°

o°

o°

o°

o°

read image, 256x256 matrix
compute its 2D-DCT

Dmax = 30393.4687

select a threshold

with threshold factor,

rth = 3.2902e-04

compressed DCT

actual compression ratio,
ra = 26617/65536 = 0.4061

inverse 2D-DCT

display images side by side




The JPEG image compression standard uses similar DCT operations, but

applied to 8x8 sub-blocks of the image. and employing a standardized quan-
tization scheme. JPEG has been replaced by JPEG2000, which uses wavelet
compression.



Summary — Simplified DCT compression system

In project-7, you will need to write a MATLAB function, dctcompr,
that implements the simplified DCT compression scheme that incor-
porates the two compression methods outlined above.

[y,ra] = dctcompr (x,N,r, method) ;

o°

= signal to be compressed

= frame length

= compression ratio or threshold factor (r<1)
method = 1,2, compression method, default is 1

o° o° o o° o
K 2 X

y = compressed signal, same length as x
ra = actual compression ratio achieved

o°




In this function, you may use either the dct/idct built-in functions, or
your own FFT-based fast versions. The function should put together
the following operations,

> N > N >l N >

X= X0 X1 X2
l X = buffer(x, NV)
PET analysis
D = det( )
compress / quantize sto’rlg)/’(r/cl;r;(cvc ,7) = method 1 or 2
‘ , Y = ldct(C')
IDCT synthesis
l y = concatenate Y columns
Y= Yo Y1 Y2

[ N > N > N >

To clarify the overall sequence of computational steps, we list below the
explicit steps for methods 1 & 2 for the previous example




L = 40;

t = (0:L-1)/L; method 1
x = sin(10*t.”*2) + 2*t; % sampled signal

N=10; r=0.4; % pick N and r - method 1

X = buffer(x,N); % NxM matrix of frames

D = dct(X) ; % DCT of each column of X

M = size(D,2); % here, M=4

o°

Nr = round(r*N) ; number of kept coefficients per frame

ra = Nr/N; % actual compression ratio

[~, Ir] = sort(abs (D), 'descend'); % sort D in descending order

Ir = Ir(1:Nr,:); % keep Nr coefficients per frame

C = zeros(size (D)) % kept DCT coefficients

for m = 1:M % rebuild DCT from the kept coefficients
Dr(:,m) = D(Ir(:,m) 6 m); % Nr x M matrix of sorted coefficients

C(Ir(:,m),m) = Dr(:,m); % C = new DCT coefficients
end

[
I

= idct(C) ; % invert compressed DCT
Y(:); concatenate columns
y = y(1:L); % compressed signal

oP°

<
I




N=10;

X

D

M

Dthr

C

C(I)

ra

Y

40;

(0:L-1) /L; method 2
sin(10*t.”*2) + 2*t; % sampled signal
r=0.014; % pick N and r - method 2
buffer (x,N) ; % NxM matrix of frames
dct (X) ; % DCT of each column of X
size(D,2); % here, M=4
= r * max(max(abs(D))) ; % DCT threshold
find(abs (D) < Dthr); % indices of DCT coeffs to be zeroed
D; % initialize with C =D
= 0; % discard coefficients below Dthr
length (find(C)) / prod(size(C)) ; % realized compression factor
idect (C) ; % invert compressed DCT
Y(:); % concatenate columns
y(1:L); % compressed signal




MDCT / TDAC

data compression system

<— 2N 4”|/ window
T
N x
Ny
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MDCT
’ tore/retri
compress / quantize | Store/retrieve
e TX/RX
r
IMDCT
s I T window + overlap-add
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MDCT / TDAC
data compression system

Such system is based on the modidied DCT (MDCT) and divides the mput
into blocks that are 50% overlapping, then windows each block, and calcu-
lates its MDCT, compresses the MDCT coefficients, and takes the inverse
MDCT, windows the resulting blocks again, and finally overlaps and adds
the results.

The window functions must be chosen properly (i.e., satistying the so-
called Princen-Bradley conditions) so that the overlap/add operation cor-
rectly implements the time-domain aliasing cancellation (TDAC) property
that allows the faithful reconstruction of the input signal.

MDCT-based compression systems are used in current audio compres-

ston formats, such as MP3, AAC, WMA. Vorbis. and others.



MDCT

The modified DCT (MDCT) is not quite an orthogonal or invertible trans-
form as it transforms a length-2/N data block into a length-N vector of
MDCT coefficients., while the inverse MDCT (IMDCT) transforms the N
MDCT coefficients back to a length-2/N data block, which is not quite equal

to the original block.

2N

original
However, because the MDCT is used in blocks that are 50% overlapping,
the reconstruction error introduced in one block is cancelled by the error in-

troduced by the next block—a property referred to as time-domain aliasing
cancellation (TDAC)—so that the original signal 1s reconstructed correctly.

MDCT IMDCT
MDCT coefficients
reconstructed




The N-point MDCT D, of a 2N-point signal z,,, and the corresponding
2N -point inverse MDCT v,, are defined as follows,

2N-1
D=3 wncos (- (k+3) (n+3+3N)). k=01 . N-1
n=>0 )
| Nl -~
Uo =5 2 Drcos (L (k+3) (n+1+1N)). n=0.1... 2N -1
f=0

The precise relationship of the reconstructed signal to the original one is
given below, being expressed more simply by splitting the input and recon-
structed length-2/V blocks into their upper and lower length- /N sub-blocks,

|2 MDCT  y IMDCT %(a —ag)
X = s — Y= |1
b 5(b +bg)




where ag, by denote the reversed vectors, e.g., for N = 4,

T (3 0 0 0 1 ao
| _laz| {0 O 1 0 ap |
a=1,l 7 =g~ lo 10 0] |al ="
_(1’-3_ _ﬂ’{]_ _1 0 0 [}_ _{13_

where, defining the N x N reversing matrix .J having ones along its anti-
diagonal line, one may think of ap as the result of the matrix operation,
ap = .JJa. Thus, introducing also the NV x N identity matrix /., we have,

~[a]  wper IMDCT B %(f — J)a |
X = > D — y=|] or,
b LI+ )b
~[a]  wocr IMDCT REEE) 0 a
b 0 U+ |b



Pictorially, we have for one block,

[« 2N -
X= a i b

l D =MDCT(x)

e N —
D

l ¥ = IMDCT(D)

y=| (a-ap)2 | (b+bp)/2
- 2N -

Applying this property to two blocks that are 50% overlapping, we observe
that if the overlapping reconstructed blocks are added. the second-half of
the first block is corrected by the first-half of the second block. recovering
the overlapping portion of the original blocks, that is,

| —

1
(h—|—bR)—|—5(b—bR):b

[



This is precisely the time-domain aliasing cancellation (TDAC) property.

= 2N |
Xab= a | b overlap
e N— b | c
MDCT l MDCT
Y
e——N—>+— N —
Dap Dp.
IMDCT l l IMDCT
Yab=| (@—ar)/2 i (b+br)/2 overlap
(b-bg)/2 i (c+Cr)/2
add
(@-ap)2 | b | (crep))2

le— TDAC —+

=Xbc

D,, = MDCT ()
D;. = MDCT(x3.)

Yo, = IMDCT(D,)
Vi = IMDCT(Dy)

=Vbe

=Yab tVbe



For a long signal that is split into several such 50% overlapping blocks, as
shown in Fig. 2, the entire signal is recovered correctly, with the exception
of the first and last length-/V portions that are not overlapping—these can
be fixed by padding N zeros at the beginning and end of the original signal
prior to MDCT processing. Alternatively, the last and first /N outputs can be
replaced by NaN’s or by the original input samples.

The fundamental TDAC result can be derived by considering the ma-
trix formulation of the MDCT/IMDCT. Let us define the N x 2N MDCT
transformation matrix by its £n matrix element,
k=0,1.... N -1

Fion c.u._(N(Hz)(nﬂﬂx) o e

Then, the MDCT and IMDCT transformations are in matrix form.

D = mdct(x) = F'x 1

, = y=—FIFx
y = imdct(D) = %FTD © N

these matrix forms may be
used in project-7




We may split F' into its two N x N submatrices, ' = A, B, defined by
their matrix elements,

-;I-I— T
A = By = cos (1= (k+3) (n + 1+ 1N)) k=01 N
- with .
Bin = Fintn = cos (T (l;. 4+ %) (-n. + % o %\T)) n=01..N-1

Then, it is left as part of project-7 to show that the submatrices A, B satisty
the relationships,

1 1
—ATA=—(I-1J
N 2( )
1BTB l(f+]
N 9 )

ATB=BTA=0

And, these imply the IMDCT property because,

1 [ATA|A™B] [sU-D)| 0 ]

1 T ]
BT] A B =N 5|57 ~ 0 L1+

—FTp—
N N




Princen-Bradley Windows

As depicted below, each frame of length-2/N of the input and reconstructed
output is windowed with a length-2/N window in order to reduce the block-
ing effects near the endpoints of the frames.

[«——— 2N ——| _ window
=== —
X=| _—— X() - -«‘.‘i
—N— =7 X; T——_
—N—> - Xy T —_
—N— -7 X3 T _
MDCT
: tore/retri
; x SIOrc/TCirievce
compress / quantize .
press /4 TX/RX
Y
IMDCT
y= -3 ~——_] window + overlap-add

—N—> = Ty -




Such windows are chosen to be symmetric about their middle with their
second length-V half being the reversed version of their first half,

W= [iti.-‘{]. wi, ..., -u-'N_L. WN_1+s-- -, we., -u@
W

Wwg

and moreover, in order to preserve the TDAC property, the windows must
satisty the following so-called Princen-Bradley condition expressed in terms
of the length-2/N window w,,. or, in terms of its half portion, w,,. for, n =
0,1,..., N —1,

a2 o~ 2 < 2 el o
U_-n —I— L‘:.-'n_l_hr — 2 — H-_n + U"h'r—l—?l — 2

Define the diagonal matrices of the windows,

[T['[}r ‘ H[?_ } W = dia g(w) ‘ I-'I-"’R _ diag (WR) o
VR

W = diag (w) =



for example, for N = 4, and w = [wyg, wy, ws, ws3], we have,

wo 0 0 0
o |0 w 0 0
W= 0 0 wy 0

0 0 0 ws]

(ws 0 0 0] 00 0 1] [we O 0 0770 0
— 0 wy 0 0 00 10 0 w, 0 0 0 0
E=10 0 w 0 01 0 0 0 0 wy 0 0 1

0 0 0 w] 1 000][0 0 0 wg|]|1 0

0

0
0

0
0
0

Then, the windowing operation on a length-2N block, assumed to be a col-
umn, can be expressed as a matrix multiplication by the diagonal window

matrices,
_[a e [Wa



The combined operations of windowing an input block, computing its MDCT
followed by an IMDCT, and windowing the result with the same window are
as follows,

¢ vindow g Wa | MDCT/MDCT
-7 |Wgb

% ( ”?H — HvR aR) Wﬂw

11172 1117
window | S(W2a — WWra -
d [?( R R) ] — TV y
2

where we made use of the properties, Wr = JW.J and J? = I, which

imply,
(Wa)p = JWa = JW.JJa= Wgap

(Wgb)r = JWgb = J*IW.Jb = Whg



When two 50% overlapping blocks are subjected to these operations and
added, then the overlapping portions (1.e., second half of the first block and
first half of the second) will combine as,

]- 9 T T J‘ 7 T J‘ 2 2
S(URb + W RT.-’[_.- b R) + 5”’[ b—1 HRbR) — E(” + T"’[-"R )b
where by term was cancelled because the diagonal matrices W, W com-
mute. Thus, in order to guarantee the TDAC property, the W matrix must
satisty the following condition, which 1s equivalent to the Princen-Bradley

condition,

i



A couple of window examples are as follows,

(sine): i =v2sin (S (n+3)) . n=01.. 2N -1

2N
(vorbis): iy, = V2 sin [% sin? ( ;\ (-n. — %)ﬂ ., o n=0.1,..., 2N — 1

The first 1s used in MP3 and MPEG-2 AAC formats, and the second in
Vorbis.

A more general procedure for constructing such windows begins with
a typical length-( N +1) window, say, fr, £ =0.1,..., N, thatis symmetric
about its middle (i.e., about %N}. such as a Kaiser or a Hamming window,
and constructs the first length-/N half of the window by forming the square-
root of the cumulative sum of fj,.



1/2 N

Z T ., o n=0.1,..., N —1, where S = Z I

k=0

-2

W, = W, =

.J

L

then, the second length-/NV half of the window is taken to be the reversed
version of w,,, obtained by replacing n by N — 1 — n,

N—l-n 1/2 5 N 1/2
WpnaeN = WN_1—n = E f m — § E ff"n'r—fs:
m=0 " k=n+1

where we changed summation variables from m to N — k. Exploiting the
assumed symmetry of the f;, window, 1.e., fy_. = fr. we obtain,

1/2

N
2
WntN = WN-1-n = | 5 Z Tk , n=0,1..., N -1
k=n+1

Together the above equations define a length-2/N window w,, that satisfies
the Prince-Bradley condition, indeed,

: N ¢
Zfa+2fa :éz zg'*:2

k=n-+1

]

a2 a2
U-'-n —|— U"?I—I—N

.J

L



An example of such window is the so-called Kaiser-Bessel derived (KBD)
window, which is used in AAC and Dolby AC-3 formats.

[t is generated by the above procedure from an ordinary Kaiser window
of length (N + 1) and shape parameter /3,

k—N/2\7
=01 -(—L) |. k=01....N
fi=1 \/ (55

Similarly, a Hamming window would have,

2k
fr = 0.54 — 0.46 cos ( N ) , k=0,1,....N

o]

% MATLAB code for constructing such windows

£f= ... % choose f£(k), n=0,1,...,N
% length- (N+1l) column vector

w = sqgrt(2*cumsum(f) /sum(£f)); % left-half of window, w(n)

w =w(l:end-1); % keep only, w(n), n=0,1,...,N-1

oP

w = [w; flip(w)]; add right-half, symmetrically




Summary -MDCT compression system

In project-7, you will need to write a funrction, mdctcompr, as well
as functions mdct, imdct, pbwin, that implement the MDCT/TDAC
compression scheme.

[y, ra] = mdctcompr (x,N,rth,win, beta) ;

oP

X = signal to be compressed

N = MDCT length, frame length = 2*N

rth = compression threshold, rth<l, (rth=0 for no compression)
win = 0,1,2,3, for rectangular, sine, vorbis, KBD windows
beta = Kaiser shape parameter when win = 3

o° d° o° o° o° o°

y = compressed signal, same size as X
ra = actual compression ratio achieved

o°




Your function must incorporate the following operations,

| 2N ] | window

X=| _ =7 "xp T——«]

— —_—

— N— _——"x; T~

~— N— -7 X3 "~~~

MéCT X = buffer(x. 2N, N, "nodelay’)
w = pbwin( N, win, )
compress“f quantize Stofl%’z,efk‘;gve W = repmat(w. 1, M)
| D = mdet(1V % X)
IMDCT C' = f(D,rg) = compressed MDCT
| Y = W ximdet(C) f
y=| =" yo ~~-_| window + overlap-add y =ola(Y, N) method-2
—N—> -7y T——_. y =y(1: length(x))
—N—> =" yy T~—_




2
I

20; M= 4; L = N*M + N;
example

t = (0:L-1)'/L;
X = sin(10*t.*2) + 2*t;

beta 15;
rthr = 0.005; % try also, rthr = 0.05

[y,ra]l] = mdctcompr (x,N,rthr,3,beta);

figure; plot(t,x,'r--', t,y,'b-");

2N =40, r_. =0.005, r =0.225 2N =40, r,. =0.050, r =0.150
thr thr a

4 : ! . . 4 : | ! !
=== original : § § === original E : 5

—— compressed| § § —— compressed| | : :




To clarify the overall sequence of computational steps, we list below the
explicit steps for the same example, such steps can be the basis of
constructing the function, mdctcompr

N =20; M= 4; L = N*M + N;
example

t = (0:L-1)'/L;
X = sin(10*t.”2) + 2*t;

beta = 15;
rthr = 0.005; % try also, rthr = 0.05




w = pbwin (N, 3,beta) ; %
X = buffer(x,2*N,N, 'nodelay’) ; %
M = size(X,2); &
W = repmat(w,1,M); %
D = mdct (W. *X) ; %
Dmax = max (max (abs(D))) ; %
Dthr = rthr * Dmax; %

D (abs (D) < Dthr)=0;

ra = length(find (D)) /prod(size (D)) ;
Y = W.*imdct (D) ; s
y = ola(Y,N); %
y = y(1l:length(x)); 3

figure; plot(t,x,'r--', t,y,'b-");

4

KBD window
50% overlapping segments

no. of segments
replicate window M times

MDCT of all windowed frames

max MDCT coefficient
MDCT threshold

%

discard all |D| < Dthr
% actual compression ratio

IMDCT following by windowing

OLA with hop-size N
make lengths equal




To display more clearly the TDAC mechanism, we compute and list the
output frames separately, for a simple signal and KBD window, assuming
no compression so that TDAC will be exact.

N=4, M= 6; L = N*M + N
x = (1:L)"';
w = pbwin(N,3,6) ; %$ KBD, with beta=6
W = sparse(diag(w)) ; % sparsify when N is large
X =W * buffer(x,2*N,N, 'nodelay’') ;
D = mdct (X) ;
Y = W * imdct (D) ;
y = ola(Y¥,N); % OLA with hop size N
Ym = zeros (N*M+N,6M) ; % list frames separately
for m=1:M,
Ym((m-1)*N + (1:2*N), m) = ¥Y(:,m);
end

num2str([x, Ym, y], '$ 8.2f"'")




1 -0.34 0.00 0.00 0.00 0.00 0.00 -0.34
2 -0.80 0.00 0.00 0.00 0.00 0.00 -0.80
3 1.39 0.00 0.00 0.00 0.00 0.00 1.39
4 3.88 0.00 0.00 0.00 0.00 0.00 3.88
5 5.65 -0.65 0.00 0.00 0.00 0.00 5.00
6 7.53 -1.53 0.00 0.00 0.00 0.00 6.00
7 4.34 2.66 0.00 0.00 0.00 0.00 7.00
8 0.49 7.51 0.00 0.00 0.00 0.00 8.00
9 0.00 9.97 -0.97 0.00 0.00 0.00 9.00
10 0.00 12.27 -2.27 0.00 0.00 0.00 10.00
11 0.00 7.07 3.93 0.00 0.00 0.00 11.00
12 0.00 0.86 11.14 0.00 0.00 0.00 12.00
13 0.00 0.00 14.28 -1.28 0.00 0.00 13.00
14 0.00 0.00 17.00 -3.00 0.00 0.00 14.00
15 0.00 0.00 9.80 5.20 0.00 0.00 15.00
16 0.00 0.00 1.24 14.76 0.00 0.00 16.00
17 0.00 0.00 0.00 18.59 -1.59 0.00 17.00
18 0.00 0.00 0.00 21.73 -3.73 0.00 18.00
19 0.00 0.00 0.00 12.53 6.47 0.00 19.00
20 0.00 0.00 0.00 1.61 18.39 0.00 20.00
21 0.00 0.00 0.00 0.00 22.91 -1.91 21.00
22 0.00 0.00 0.00 0.00 26.46 -4 .46 22.00
23 0.00 0.00 0.00 0.00 15.26 7.74 23.00
24 0.00 0.00 0.00 0.00 1.99 22.01 24.00
25 0.00 0.00 0.00 0.00 0.00 27.22 27.22
26 0.00 0.00 0.00 0.00 0.00 31.20 31.20
27 0.00 0.00 0.00 0.00 0.00 17.99 17.99
28 0.00 0.00 0.00 0.00 0.00 2.36 2.36




