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AQOSP
Ch.15

Vector and Matrix Norms

The three most widely used vector norms are the L, or Euclidean norm, the
Ly and the L., norms, defined for a vector x € RY by:

X|l2 = \/|;1-‘1|2 + ‘;172\2 + o+ |;1'£‘-N|2 = vVxTx
X|1 = I;I‘-1| -+ |;1.‘g| + -+ |;1.‘N|

X |loo = max(|z]. |79, .. .. E3sd)

where.

RO

More generally, the L, norm is defined as,

-l

Ixllp = (Joal? + 2ol + - + aw?)



All vector norms satisty the friangle inequality:
, . , N
x+yll < lx|l+lyll. for x.y eR
The Cauchy-Schwarz inequality for the Euclidean norm reads:
Ty ;

Xy [ < (x| lv]]
where equality is achieved when y is any scalar multiple of x. The “angle”
between the two N-dimensional vectors X,y is defined through:

xTy

X[y |

cosfl =



An N x M matrix A is a linear mapping from R to RY, that is, for each
x € RM the vectory = Ax is in R For each vector norm, one can define
a corresponding matrix norm through the definition:

Ax||

|A|| = sup I— = sup |
Ixizo X[ =

Ax ||

The Euclidean matrix norm || A||s is actually equal to the largest singular
value of the SVD decomposition of A. or equivalently, the square-root of
the largest eigenvalue of the matrix ATA or the matrix AA”. The L, and
L~ matrix norms can be expressed directly in terms of the matrix elements

A;; of A:

| All1 = max E | A;;| = maximum of column-wise sums
i =
T
| All oo = max E |A;;| = maximum of row-wise sums
(3
J



Another useful matrix norm—mnot derivable from a vector norm—is the
Frobenius norm defined to be the sum of the squares of all the matrix el-
ements:

A

A;j|? = y/tr(ATA)) (Frobenius norm)

F = E
3

The Lo. L1, L. and the Frobenius matrix norms satisfy the matrix versions
of the triangle and Cauchy-Schwarz inequalities:

1A+ Bl < [[All +[|B]
IABI| < [IA[[ ]| B]]

The distance between two vectors, or between two matrices, may be defined
with respect to any norm:

dx.y) =[x —y|. dAB)=

A—B||



Subspaces, Bases, and Projections

A subset Y C RY is a linear subspace if every linear combination of vectors
from Y also lies in Y. The dimension of the subspace Y is the maximum
number of linearly independent vectors in Y.

[f the dimension of Y 1s M, then, any set of M linearly independent
vectors, say {bqy,bo, ..., by}, forms a basis for Y. Each basis vector b,
is an N-dimensional vector, that is, it lies in RY. Because Y is a subset of
RY, we must necessarily have M < N. Any vector in Y can be expanded
uniquely as a linear combination of the basis vectors, that is, for b € Y:

_ ¢t -
M o
b = Z {j.;;b.j, — Clbl + C'ng + . -Cﬁfbﬂf — [bl b2 _____ bﬂ,f] : — Bec
i=1 .
L CM ]

where we defined the /N x M basis matrix 5 and the M x1 vector of expan-
sion coefficients c,

" ey ]
C2
B:[bl.bg ..... bu} ¢ =
f
| CM ]

b =Bc, columns of B




Because the columns of B are linearly independent. /5 will have full rank
equal to M. It follows that the A/ x M matrix B B will also have full rank,
and. therefore, it will be invertible. This allows us to compute the expansion
coefficients ¢. Multiplying both sides of the above expansion by BT, we
may solve for ¢ :

B =B"Be = ¢=(B"B)"'B"b=DB"b
B = (BTB)~'BT

The space spanned by the linear combinations of the columns of the matrix
B is called the column space or range space of B and is denoted by R(B).
Because B is a basis for Y, we will have Y = F(B). The matrix equa-
tion Be = bis an overdetermined system of /N equations in M unknowns
that has a solution because we assumed that b lies in the range space of 5.
The quantity BT = (BT B)=!B7T is a special case of the Moore-Penrose
pseudoinverse (for the case of a full rank matrix B with N > M)



Be =Db

In MATLAB notation, the backslash or the pseudoinverse operators produce
the same answer in the full-rank case:

¢ = B\b = pinv(B)xb = B™b

The matrix BT B € RM*M g called the Grammian. Its matrix elements are
the mutual dot products of the basis vectors,

(B'B);j=blb;, i,j=12....M

The quantity P = BB+ = B(BTB)~' BT is the projection matrix onto the
subspace Y. As a projection matrix, it is idempotent and symmetric, that is,
P? =P and P = P.

The matrix Q = [y — P 1s also a projection matrix, projecting onto
the orthogonal complement of Y, that is, the space Y+ of vectors in R” that
are orthogonal to each vector in Y. Thus, we have:

P = BB = B(B"B)"'B" = projector onto Y’
Q =1Iy — BB =1y — B(B"B)'B! = projector onto Y+



They satisfy the properties,
B'Q=0, PQ=QP=0. P+Q=1Iy

These imply that the full space R¥ is the direct sum of Y and Y+. Moreover.
the subspace Y+ is the same as the null space N(BT) of BT. This follows
from the property that b, € Y+ if and only if B¥b; = 0. Thus. we have
the direct-sum decomposition:

Y@&Y+=R(B)e N(B") =R"

The orthogonal decomposition theorem follows from this. It states that a
given vector in RY can be decomposed uniquely with respect to a subspace
Y into the sum of a vector that lies in Y and a vector that lies in Y+, that is,
forb € RV:

b=by+b,, where b€}, b, eVt
so that, b’ b; = 0. Indeed, defining, by = Pb. and, b, = Qb we have:
b=Ixb=(P+Q)b=Pb+9b=D>b;+b,



The uniqueness is argued as follows: setting by +b; = b’” + b’ for a
different pair by € Y, b’ € Y=, we have by — bj = b’ — b, which
implies that both difference vectors lie in Y N Y+ = {0}. and therefore,
they must be the zero vector. The figure below illustrates this theorem.

Ayt= N(BT) ) b
P
Y = R(B) b

I
b,

An alternative proof is to expand b in the B-basis, that 1s, by = Be, and
require that b, = b — by be perpendicular to V', that is, BYb; = 0. Thus,
we get the conditions:

b=Bec+b, = B'™W=B"Be+B", =B"Be
or.

¢c=(B"B)'B'b, b =Bec=B(B"B)'B"b="Pb



A variation of the orthogonal decomposition theorem is the orthogonal pro-
jection theorem, which states that the projection b is that vector in Y that
lies closest to b with respect to the Euclidean distance, that is, as the vector
y € Y varies over Y, the distance |[|b — y|| is minimized wheny = b. The
figure below illustrates the theorem.

b Y= NB

i
Y = R(B)

b

9

]

We haveb —y =b;+b, —y = (b, —y) + b, butsince both b and y
lie in Y, so does (b —y) and therefore, (b —y) L b . It follows from the
Pythagorean theorem that:

b —y|* = [I(by —y) +bo|* = [by—y[* +[b_]”

which is minimized when y = by. The minimized value of the distance is
|b —by|| = ||[bL]|. The orthogonal projection theorem provides an intuitive
interpretation of linear estimation problems and of least-squares solutions
of linear equations.



The basis B for the subspace Y is not unique. Any other set of M linearly
independent vectors in Y would do. The projector P remains invariant un-
der a change of basis. Indeed, suppose that another basis is defined by the
basis matrix, U = [uy,usg, ..., uy |, whose M columns u; are assumed to
be linearly independent. Then, each b; can be expanded as a linear combi-
nation of the new basis vectors u;:

M
b= we;. j=L12...M
i=1

These relationships may be expressed compactly in the matrix form:
B=UC (base change)

where €' is the M x M matrix of expansion coefficients ¢;;. Because U and
B have full rank, the matrix C' will be invertible (the u;’s can just as well be
expressed in terms of the b;’s.) It follows that BT B = CT(UTU)C and:

P=B(B"B)'BT =vc(cTWwTv)0) T cTUT
— U(_.*(c—l([_fTU)—lc—T)C_.*TUT — U(Uutu)-tuT

where C'~T denotes the inverse of the transposed matrix C'.



Among the possible bases for Y, a convenient one is to choose the M vec-

tors u; to have unit norm and be mutually orthogonal. that is, ul u; = d;;,

fori,7 =1.2,..., M. Compactly, we may express this condition in terms
of the basis matrix, U = [uy,us, ..., uyl:
Ul = Ins (orthonormal basis)

In this case, the projection matrix P can be expressed simply as:
P=BB'B)'B =vWw'U)"'vt =vUt

There are many ways to construct the orthonormal basis U starting with
B. One is through the SVD implemented into the MATLAB function orth.
Another 1s through the QR-factorization, which is equivalent to the Gram-
Schmidt orthogonalization process. The two alternatives are:

U = orth(B); % SVD-based
U = gr(B,0); % QR-factorization



The Fundamental Theorem of Lineajr Algebra
An N x M matrix A € RY*M of rank
r < min{M, N}

1s characterized by four fundamental subspaces: the two range subspaces
R(A) and R(AT) and the two null subspaces N(A) and N(AT).

These subspaces play a fundamental role in the SVD of A and in the
least-squares solution of the equation,

Ax =b

The fundamental theorem of linear algebra states that their dimensions and
orthogonality properties are as follows:

R(A)., subspace of RY. dim = r. R(A)L = N(AT)
N(AT), subspace of RV, dim= N —r, N(AT)L = R(A)
R(AT), subspace of RM, dim = r. R(AT)L = N(A)
N(A), subspace of RM, dim= M —r. N(A)* = R(AT)



Note: if. b = Ax, is literally true, then the vector b is a linear combination
of the M columns of A,

A=lay, ag, -+, ayl, a, — ith column of A
thatis. columns of A L
I
9
b= Ax = [31. do. -+ . HM’] .
L
or.

b =xja; +x0a9+ -+ xprayy

thus, only if, b € R(A), then does a solution of, b = Ax, exist.

In general, b need not lie in F(A), and we can only look for least-squares
solutions of, b = Ax.



The dimensions of the two range subspaces are equal to the rank of A. The
dimensions of the null subspaces are called the nulliry of A and AT. It
follows that the spaces RM and RY are the direct sums:

RN = R(A)@ N(AT) = R(A) @ R(A)*
RM = R(AT) @ N(A) = R(AT) ® R(AT)*

Their intersections are: R(A) N N(AT) = {0} and R(AT)n N(A) = {0}.
that 1s, the zero vector. The figure below depicts these subspaces and the
action of the matrices A and A7,

The fundamental theorem of linear algebra, moreover, states that the
singular value decomposition of A provides orthonormal bases for these
four subspaces and that A and A7 become diagonal with respect to these
bases.

R(4") R(4)

RN
-~ N(A) ~N(4")

RM




Solving Linear Equations

Given an N x M matrix, A € RM*M of rank, » < min(N, M), and a vector,
b € RY, the linear system, AXx = b, may or may not have a solution,
x € RM. A solution will exist only if the vector b lies in the range space
R(A) of the matrix A.

However, there is always a solution in the least-squares sense. That so-
lution may not be unique. The properties of the four fundamental subspaces
of A determine the nature of such least-squares solutions.

Defining the error vector, e = b — Ax, a least-squares solution 1s a
vector, x € R, that minimizes the Euclidean norm, ||e|. that is.

J=|e||*> =e’e =|b — Ax||* = (b — Ax)" (b — Ax) = min
The solution is obtained by setting its gradient to zero:

2] |
9L _oATe — —2AT(b — Ax) = 0
X ‘

Thus, we obtain the orthogonality and normal equations:

Ale =0 (orthogonality equations)

ATAx = ATb (normal equations)



[f the M x M matrix ATA has full rank, then it is invertible and the solution
of the normal equations is unique and is given by

x = (ATA)"1ATp (full-rank overdetermined case)

This happens, for example, it N > M and » = M. In the special case of
a square full-rank matrix A (that is, » = N = M), this solution reduces to,
x = A™'b.

For the rank-defective case, A4 is not invertible, but the normal equa-
tions do have solutions. They can be characterized with the help of the four
fundamental subspaces of A, as shown below.




Using the direct-sum decompositions, we resolve both b and x into their
unique orthogonal components:

b = b| -+ bJ_. b” & R[_—l) bJ_ c :\?(_—11—) b c RN
X=X +x1, x| €RA"). x; €N(A), xeRY

Because x| lies in the null space of A, we have Ax; = 0, and therefore,
Ax = A(x) +x1) = Ax). Then, the error vector becomes:

e=b—-Ax= (b — Ax|) +b, =¢| + e,

Because both by and Ax lie in [2(A), so does e = b — Ax;, and there-
fore, it will be orthogonal to e, = b . Thus, this equation represents the
orthogonal decomposition of the error vector e.

But from the orthogonality equations, we have, A”e = 0, which means
that e € N(A”). and therefore, e = e . This requires that e = 0, or,
Ax| = b). Because b lies in F(A). this system will have a solution x .

R(AT) R(4)




Moreover, because x; € R(A”'), this solution will be unique. Indeed, if
b = Ax) = Ax|, for another vector x| € R(A"), then A(x) —x|) = 0,
or, X|| — x’l would lie in N(A) in addition to lying in [2(AT), and hence it
must be the zero vector because R(AT) N N(A) = {0}. In fact, this unique
X may be constructed by the pseudoinverse of A:

Axy=b; = x;=A"b; =A"Db (minimum-norm solution)

An explicit expression for the pseudoinverse A™ can be given with the help
of the SVD of A. The MATLAB function, pinv, is an implementation.

[t can be shown also that A*b; = A™b. In conclusion, the most gen-
eral solution of the least-squares problem is given by:

x =A"b +x,

where X | 1s an arbitrary vector in N (A). The arbitrariness of X | parametrizes
the non-uniqueness of the solution x.

R(4") R(4)




The pseudoinverse solution x| is also recognized to be that particular so-
lution of the least-squares problem that has minimum norm. This follows
from the Pythagorean theorem,

2 2 2 A1+ 2 2
(1™ = A7+ Jx ] = [[ATD{™ + x|

which is minimized when x; = 0. or, when x = x. The minimum-norm
solution is computed by MATLAB’s built-in function pinv,

X =pmv(A4)*b
The solution obtained by MATLAB's backslash operator,
x =A\b

does not. in general. coincide with x;. By construction. it has a term x|
chosen such that the resulting vector x has at most r non-zero (and M — r
zero) entries, where 7 1s the rank of A.

R(AT) R(4)




We obtained the general least-squares solution by purely geometric means
using the orthogonality equation and the orthogonal decompositions of X
and b. An alternative approach is to substitute the orthogonal decomposi-
tions,

e=b—Ax= (b - Ax|) +b, =¢| +e,

directly into the performance index and use the fact that e and e are or-
thogonal:

T =llell* = lleyl* + [leLl* = [[by — Axy[I* + [[bL]]*

This expression is minimized when, Ax = by, leading to the same general
solution. The minimized value of the mean-square error is ||b_ ||2.




Full-Rank Linear Equations

The full-rank case deserves special mention. There are three possibilities
depending on whether the system, Ax = b, is over-determined, under-
determined. or square. Then, one or both of the null subspaces will consist
only of the zero vector:

. N>M, r=DM, N(A) ={0}, RAT)=RM  (over-determined)
2. M >N, r=N. NA ={0}, R(A)=RY. (under-determined)
3. N=M., r=N, N(A)={0}, N(AT)={0}, (square, invertible)

The three cases are depicted below.



R(A") R(A)
A A
T
X =X, X = I b,
NA) = {0} o
M> N =
R(AT) N=r Ry
A A
- x  Ax=Ax, _
A } _ _|_ y \
X/ X,=A"b, b=b,
KT NA) Nuh = o)
Ry NEMETE gy
A A
,,,,,,,,,,, A §,=,f,4,¥,”,,,,,,,,,,
A =A_|_b A
X=X, X I b=b,
N(4) = {0} N(") = {0}

overdetermined

At = (ATA)1AT

X =x,=A"b

unique LS solution

underdetermined

[y

AT = AT(AAT)T
X” = f-‘l+b

many exact solutions

square
AT = A1
X =X = j—’l_lb

unigue exact solution




In the over-determined case, N(A) = {0} and therefore, the least-squares
solution is unique
X =X|

and, as we saw earlier, it is given by,
x = (ATA)7tATD
and the pseudoinverse is in this case,

At = (ATA)1AT

X — X|| — ﬂ—l_b



In the under-determined case, we have, b = b, that is, b is in the range of
A, and therefore. Ax = b. does have a solution. There are more unknowns
than equations, and therefore, there is an infinity of solutions, X = x| +x .
The minimum norm solution can be constructed as follows.

Because, x| € R{\AT). there is a coefficient vector ¢ € RY such that,
x| = Al'c. Then, the system reads,

b = Ax = Ax = AA¢

The N x N matrix AAT is invertible because it has full rank. » = N. Thus,
we find, ¢ = (AA")~'b, and hence,

x| = Ale = AT(AAT) b
so that the pseudoinverse is in this case,
AT = AT (A4
x, =A"b



Finally. in the square invertible case. we have x = A~!b. because in this

case.”r = N = M. and A as well as AT are invertible. resulting in,

AT = AT(AAT) T = AT (AT T = A

X =X = A_lb

The three full-rank cases may be summarized as follows:

l. N>M=r, x = A%b, At = (ATA)7TAT
2. M >N =r, X = Atb +x,, At =AT(AAT)!
3. N=M=r, x = A~'b. At = A-1

In the last two cases, the equation, Ax = b. is satisfied exactly. In the first
case, it 1s satisfied only in the least-squares sense.

AT = A"



Singular Value Decomposition
Given an N x M matrix A € RV*M of rank,
r < min(N, M)

the singular value decomposition theorem states that there exist orthogonal
matrices, U € RV*N and. V € RM*M gych that A is factored in the form:

A=UxvT (SVD)

where, X € RV*M is an N x M diagonal matrix. partitioned in the form:

10
2 =100

with Y. a square diagonal matrix in R™*":

with positive diagonal entries called the singular values of A and arranged
in decreasing order:
o> 09 > >0, >0



The orthogonal matrices U, V' are not unique, but the singular values o;
are. To clarlty the structure of X' and the blocks of zeros bmdenn Y. we
give below the expressions for X for the case of a 6x4 matrix A of rank
r=1,2,3,4:

o1 |0 0 0] [er 0]0 0] [or O 0]0 o 0 0 0
00 0 0 0 o2|0 0 0 o2 00 0 o2 0 0O
00 0 0 0 0]0 0 0 0 o3|0 0 0 o3 O
00 0 0 0 010 0 0 0 0]0 0 0 0 o4
00 0 0 0 010 0 0 0 00 0 0 0 0
'olo 0o o] Lo o|oof] [0 o of|0o] [0 0o 0 O

The orthogonality of U/, V" may be expressed by
UTU = UUT = Iy
VIV = vV =1y

These just mean the U has N orthonormal columns that form a complete
basis for RY, and V has M orthonormal columns that form a basis for RM .



Denoting the columns of U by u;, = = 1,2,.. ., N, and the columns of V'
by v;, i =1,2,..., M, we may partition U/, V" in a compatible way as X

Then, the SVD decomposition can be written in the form:

A= o 2 L0] [ ]

Ho o] [vr] T

or. as a sum of r rank-1 matrices:

U, XV,

/'I ?1__.'.r 'i"'

r

A= E crg-u_iviT = alulvg — agugvg +---+o0o,u,v

i=1

T

P



The submatrices have dimensions.
U, e RV U, e RV v, e RV, e RM*MD)

The orthogonality and completeness properties of U/, V. may be expressed
equivalently in terms of these submatrices:

vt =1, U'U, =1Iy_,. U'U, =0. UUI+UU" =1y
VIV, =1, VIV,=Iy_,. VV,=0. VI +VVI =1y

I

For example, we have:

(T,

07T,

vro.l [njo ]
oro, | [0 [Ive] I

Uty =

i T 7T rrr
00T L U, 0T = UUT = Iy



The SVD of A provides also the SVD of AT, that is, AT = VXTUT, The
singular values of AT coincide with those of A. The matrix £ has dimen-
sion M x N, but since 7 = ¥, we have:

Although A and AT can be constructed only from U,., Y., V,., the other sub-
matrices U,., V, are needed in order to characterize the four fundamental
subspaces of A, and are needed also in the least-squares solutions.

Multiplying, A = U, X, VX', from the right by V, and V., and multiply-
ing, AT = V,X,.UL, by U, and U, and using the orthogobality properties,
we obtain:

ATU. = V.5 UE" U.=V.% . AT ['}*_r = V. ["Tf [:'Tr — ()



or, explicitly in terms of the basis vectors u;, v;:

f'uf; — [T?‘Z? Avi = o;Uu; . i =1,2 1
AV. =0 Av, = i=r4+1,.... ] VI
Tr7 7 = T : :
A [r = ITE? A U; =o;Vv;. 1=1,2.. 1
ATU, =0 ATu; =0, i=r+1,...,] N
These equations show thatu; and v;, 2 = 1,2, ..., r, lie in the range spaces

R(A) and R(AT). respectively. Moreover, they provide orthonormal bases
for these two subspaces.

Similarly, v;, 2 = r+1,.... M, and u;. 2 = r+ 1,..., N, are bases

for the null subspaces N(A) and N(AT), respectively.

Thus, a second part of the fundamental theorem of linear algebra is
that the matrices U,., U,, V.., V.. provide orthonormal bases for the four fun-
damental subspaces of A, and with respect to these bases. A has a diagonal

form (the X).

R(A")
A

RM

~N(4)

R(4)
A

RN

-N(4")




The subspaces, their bases, and the corresponding projectors onto them are:

R(A) =span{U,}, dim=r. U, =1, .

N(AT) = span{[}r}. dim= N —r . [':“f[}r =In_,,

R(AT) = span{V,}, dim=r. VIV, =1, .

N(A)=span{V,}, dim=M—r, VIV,=1Iy_,.

Priay = U UL
Pyary = UUT
Priary = V,VE
Pray = V, VT

The vectors u; and v, are referred to as the left and right singular vectors
of A and are the eigenvectors of the matrices AAT and ATA, respectively.
Indeed. it follows from the orthogonality of U and V" that:

ATA=vxtutvzvt =v(Zt oyt Xy =

AAT =UXVIvyTUT =X xtout, xyT =

2

0

[0 [0]
[ 3210]
0 |0

c Rﬂ«f M

c RN x N

It is evident from these that V" and U are the matrices of eigenvectors of

ATA and AAT and that the corresponding non-zero eigenvalues are \; = o

2

i .

i=1.2,..., r. The ranks of ATA and AAT are equal to the rank r of A.



The SVD factors V. U could. in principle, be obtained by solving the eigen-
value problems of A7A and AAT. However, in practice, loss of accuracy
can occur in squaring the matrix A. Methods of computing the SVD di-
rectly from A are available.

A simplified proof of the SVD is as follows. We assume that N > M
and that A has full rank » = M (the proof can easily be modified for the
general case.) First, we solve the eigenvalue problem of the matrix A%A:

ATA = vAVT . A =di ag(Ai. Ao, . ... Au) € RMxM

Because A% A has full rank. it will be strictly positive definite, its eigenvalues
will be positive, and the corresponding eigenvectors may be chosen to be
orthonormal, that is, VIV = V'V = [,,.

Arranging the eigenvalues in decreasing order, we define o; = v/,

= 1,2,.... M, and ¥y = A2 = diag(oq, ..., o) € RM*M - Then,
we define, U/; = AV X!, which is an N x M matrix with orthonormal
columns:

L.Tir {’ | = El—l I’;T ( ) 4 T A J 1r Z'l— 1 _ Zl— 1 1}_.:-T (1* Zf L_rT ) 1? Z'l— 1 _ L‘H’



Next, we solve for A. We have,
U = AV 51—1 = UM =AV = U} VIi—AvVVT = A

A=0U, Zﬂf’T (economy SVD)

The N x M matrix U1 may be enlarged into an N x /N orthogonal matrix by
adjoining to it (N — M) orthonormal columns U/ such that U] U/; = 0, and
similarly, the M x M diagonal matrix X; may be enlarged into an N xX M
matrix X, and we obtain the standard full SVD form:

A\
o [ o

The economy SVD is also called thin SVD because the /1 matrix has the
same size as A but has orthonormal columns, and X has size M x M. For
many applications, such as SVD signal enhancement, the economy SVD is
sufficient. In MATLAB. the full and the economy SVDs are obtained with
the calls:

A=U2 VT =)y

[U,5,V] = svd(A); % full SVD
[U1,81,V] = svd(A,0Q); % economy SVD



Example

Consider the full SVD of the 4x2 matrix A:

(0.5 1.0] 05 05 —01 —07] [2 0] .
g |11 020 105 05 —07 0.1 0 1 [u.g (].G]
‘ 1.1 0.2 0.5 —0.5 07 —=01) [0 o} (06 0.8

0.5 1.0 \_-0‘5 0.5 0.1 [)_?_“_[) [}_J*-—{;;;—-’

U ¥
[ts economy SVD is:
0.5 1.0] (0.5 0.5] .

g (L1020 105 05 [2 0] [0.8 _u.ﬂ

‘ 1.1 0.2 05 —05!1 [0 1| [06 08

0.5 1.0 0.5 0.5 S S ——
L - L a ) I vT




The choice of the last two columns of U is not unique. They can be trans-
formed by any 2x2 orthogonal matrix without affecting the SVD. For ex-
ample, v5.3 of MATLAB produces the U matrix:

T

0.5 —0.1544 —0.6901

version-dependent —

0.5

).5 —0.5 —0.6901  0.1544
)5 =05 0.6901 —0.1544
(0.5 05 01544 0.6901

[ =

.-—-.-'—-.-—-.-—~

The last two columns of the two U matrices are related by the 2x2 orthog-
onal matrix C":

—0.1544 —0.6901] [=0.1 —0.7]

—0.69001 01544 | _ | -0.7 01| O [[).E}QGQ (].[1?81]
0.6901 —0.1544 0.7 —0.1] " CT 100781 0.9969
0.1544  0.6901 0.1 0.7

where CTC' = .



Complex-Valued SVD

The SVD of a complex-valued matrix A € CY*M takes the form:
A=UXV?
where T denotes the Hermitian-conjugate, or conjugate-transpose,

vi— T

The matrix X' is exactly as in the real case, and U, V' are unitary matrices,
[ € CN*N _and, V € CM*M that is,

Ut =00 =1y
V{f? _ Vﬁ; — [y

Complex-valued SVDs are useful in the spectrum estimation problem of
extracting comple sinusoids in noise.



Maximization Criterion for the SVD

The singular values and singular vectors of a matrix A of rank r can be
characterized by the following maximization criterion.

First, the maximum singular value o4 and singular vectors uy, v, are
the solutions of the maximization criterion:
oy = max max ul Ay = uIAVl
lul=1v]I=1

Then, the remaining singular values and vectors are the solutions of the
criteria;
g, = max max ulAv = uAv,, 1=2..., r

lul=1]v]I=1

subject to the constraints: ufuj = vij =0, 7=12.....1—1



For o4, the proof is straightforward. Using the Cauchy-Schwarz inequality
and the constraints |ju|| = ||v|| = 1, and that the Euclidean norm of A is o7,
we have:

u' Ay

< [Julifl ALV = 1Al = o1

with the equality being realized whenu =u; and v = vy.

For the next singular value o9, we must maximize u’Av over all vec-
tors u, v that are orthogonal to uy, vy, that 1s, ufu; = viv, = 0. Using the
SVD of A, we may separate the contribution of uy, v:

T
A= 01111?'11- -+ E Ulﬂ.iV:-r = (Tllll‘if’J{ + Ao
=2

Then, the constraints imply that ufAv = uf(oyu;v] + A;)v = ufAyv.
But from the previous result, the maximum of this quantity is the maximum
singular value of As, that is, o9, and this maximum is realized when u = us
and v = vo.

Then we repeat this argument by separating out the remaining singular
terms {J'g-lliV_I- one at a time, till we exhaust all the singular values.

This theorem 1s useful in canonical correlation analysis and in charac-
terizing the angles between subspaces.



Moore-Penrose Pseudoinverse

For a full-rank N x N matrix with SVD A = UXV7, the ordinary inverse
is obtained by inverting the SVD factors and writing them in reverse order:

Al — y-Ty-1py-1 — yyo-1pT

where we used the orthogonality properties to write V=7 = V and U~} =
UT. For an N x M rectangular matrix with defective rank r. £ =% cannot be
defined even if it were square because some of its singular values are zero.
For a scalar x, we may define its pseudoinverse by:

a7l i 2 #0
0, if =0

I+ —

For a square M x M diagonal matrix, we define its pseudoinverse to be the
diagonal matrix of the pseudoinverses:

¥ = diag(oy, 09, . . .. o) = YT =diag(o] .oy, . ... o)



And, for an N x M rectangular diagonal matrix of r non-zero singular val-
ues, X € R¥*M we define its pseudoinverse to be the M x N diagonal
matrix, ¥ € RM*V:

v |20 cRVM vyt _ (271 0]

0|0 [ 0 \(]J

c RM’ *x N

The pseudoinverse of an N x M matrix A is defined by replacing, X!, by
Yt thatis, if, A = UXVT € RV*M then, AT € RM*V,

At =vy+uT (Moore-Penrose pseudoinverse)

Equivalently. using the block-matrix SVD decompositions, we have:




These can be written as sums of r rank-1 matrices:

T

) T T T T
A= oWV, = ojuivy + oaavVy + -+ ou, v,

i—1
— 1 1 1 1
T T T T
AT = E —Vv,u; = —viu; +—vouy +---+ —v,u.
i=1

T; a1 g2 Or

The matrix A™ satisfies (and is uniquely determined by) the four standard
Penrose conditions:

AATA = A, (AAHT = AA+
ATAAT = A+, (A*A)T = A+A

These conditions are equivalent to the fact that AA™ and A* A are the pro-
jectors onto the range spaces R(A) and R(AT), respectively. Indeed.

Priay = U U = AAT . Ppany =V, VI = ATA



It is straightforward also to verify the three expressions for A™ for the full-
rank cases.

I[f N > M = r, the matrix V, is square and orthogonal, so that. ATA =
V, X2V T s invertible, (ATA)™! =V, X2V T Thus,

(_ATjil)_lflT _ (1;2;‘21;1") (1;ETETE) — 1;2;1{;5 _ A-F

It M > N = r, then the matrix U, is square and orthogonal, so that,
AAT = U, X2UT | is invertible, (AAT)™t = U, X2UT . Thus,

AT(AAT) = (v, 2,07 (U,27207) = V, 20T = A*



Least-Squares Problems and the SVD

Having defined the pseudoinverse and convenient bases for the four fun-
damental subspaces of A, we may revisit the least-squares solution of the
linear system,

Ax =b
First, we show that the solution of, Ax = by, is, indeed. given by the
pseudoinverse A" acting directly on b, that is, x| = A*b.

By definition, we have, b = Pra)b. Using the SVD of A and the
projector, Pr(a) = UTUE , we have:

Axy=b; = USVIx =00 = Vix =0T

where we multiplied both sides by U7 and divided by X,.. Multiplying from
the left by V., we find:

VVIx = VI U = AT



but we have, Ppar) = V, VT, so that,
x| = Prunx =,V x =V Vx,
the latter following from, (V,V1)2 = V, VI, that is,
x| =VV!x=VV (V,V!'x)=VVx
Thus. x; = V,V,'x; = A*b. We also have.
ATb = (ATAAT)b = AT(AATD) = ATb,

Thus. we have shown:

x| =ATb;=A"Db (minimum-norm, pseudoinverse, solution)

or, explicitly in terms of the non-zero singular values:

r 1
x| =A"h =V, X7 Ub =) — v,ulb
i=1 °




We recall that the most general least-squares solution of, AX = b, is given
by.x = x +x, where, x| € N(A). We can give an explicit construction
of x | by noting that V. is an orthonormal basis for N(A).

Therefore, we may write x| = V,z. where z i1s an (M —r)-dimensional
column vector of expansion coefficients, that is,

Zr41 |
M -
-"-'.T'+2 *—.‘?
XJ_ pum— Z A.‘_r,"'z, = |:“'-r—|—1-.vr_|_2 _____ "ﬂrf] ' — ITZ
i=r+1 :
| 2m

Because x is arbitrary, so is z. Thus, the most general solution of the
least-squares problem can be written in the form:

X=X|+x, = A*b 4+ V,z | forarbitrary, z € RM~




Since the optimal least-squares solution has, e = 0, the remainder of the
error will be,

e=e; =b, =Pyurb=UU"b = (Iy - UUb = (Iy — AAT)b
and the minimized value of the least-squares performance index:
Jmin = ||€]|> = bT (Iy — AAT)b
where we used the property
(In — AAT) T (Iy — AAT) = (In — AAT)
which can be proved directly, indeed, using the Penrose conditions,

(In — AATY (Iy — AAT) = Iy — 2AAT + AATAAT
= Iy —2AAT + AAT =Ty — AAT



Example

Find the most general solution of the following linear system, and in partic-
ular, find the minimum-norm and MATLAB's backslash solutions:

18 24 40] [ 10
| —-18 —24 —40 [1] l20]
AX=1 98 24 40 [{?J = 30| =P
1.8 —24 —4.0| L1 a0
A possible SVD of A is as follows:
r = n= n=11T 1]
0.5 0.5 =05 050 410001 rg o ys 877
—0.5 =05 =05 0510 0 0] |, :
A= ’ o 11048 —0.64 —06
0.5 =05 05 05010 000 | o0 ten 00
—05 05 05 05[]0 0 0L ey
— ~ o -~ — 1-;}
U X

The matrix A has rank one, so that the last three columns of [V and the last
two columns of V" are not uniquely defined. The pseudoinverse of A is,

.
_::; 0.36

[;;)'; [10][0.36,0.48.0.80] = AT = [0.48 | [1071]0.5, —0.5,0.5, —0.
_h'; 0.80

[.-

)

|



Therefore, the minimum-norm solution will be:

{[).36] ,1)8 [—0.361
x| =ATb = 0481 [1071[0.5,-0.5,0.5,-0.5] | 5| = | —0.48
[}.8UJ 10 [-(J.B[}J

The term V,.z depends on the two last columns of V', where z 1s an arbitrary
two-dimensional vector. Thus, the most general least-squares solution is:

—0.36 —0.4% 080 —0.36 — 0.48z1 + 0.8029
x = |—048| + | =0.64 —0.60 lll = | —0.48 — 0.64z1 — 0.602z9
—0.80 0.60 0.00| L2 —0.80 + 0.60z

MATLARB’s backslash solution is obtained by fixing 21, z9 such that x will
have at most one nonzero entry. For example, demanding that the top two
entries be zero, we get:

—0.36 — 0.482; + 0.802 = 0 0 0
—0.48 —0.64z; — 0.6029 = 0 1= T, 2=
which gives —0.8 + 0.6z = —1.25. and therefore.

0
X = 0
—1.25

This is indeed MATLAB's output of the operation A\b.



Condition Number
The condition number of a full-rank N x N matrix A is given by:

_ T max
K(A) = |[Allz- A7 l2 =

where oqay, Omin are the largest and smallest singular values of A, that is,

o1, 0. The last expression follows from || Ay = oy and || A7, = o3
The condition number characterizes the sensitivity of the solution of a

linear system. Ax = b. to small changes in A and b. Taking differentials of

both sides of the equation, Ax = b, we find:
Adx + (dA)x =db = dx = A" [db — (d}l)x]
Taking (the Euclidean) norms of both sides, we have:

ldx|| < A [[[ldb — (dA)x|| < [ AT [[ldb ]| + [[dA[]|x]]

Using the inequality [|b|| = ||Ax|| < ||All[|x]|. we get:
x| llldﬂll IItf-bll
I < k(A) +
x| 1Al [Ib]l

Large condition numbers result in a highly sensitive system, that is, small
changes in A and b may result in very large changes in the solution x. Large
condition numbers, x(A) > 1, imply that oy > oy, or that A is nearly
singular.



Example

Consider the matrix A, which is very close to the singular matrix Ag:

A — 10.0002 19.9999 A 10 20
T 49996 10.0002( Y7 | 5 10

[ts SVD is:

4 [VOZ —V02] [25.0000 0.0000] [V02 —VOS T—UW—-"T
AT 02 VOS] | 00000 00005 |08 Vo2 T

Its condition number is, x(A) = 1 /02 = 25/0.0005 = 50000. Computing
the solutions of Ax = b for three slightly different b’s, we find:

10.00] 0.2
bi=1 500 7 Xt=Ab1= _(1_4]

110.00 ] [ —15.79992
b2=1 501 7 Xe=MAb2=) 8.4(][)16]

10.01 | , | 8.20016
bs=1500] = Xs=A\bs= _359968]

The solutions are exact in the decimal digits shown. Even though the b’s
differ only slightly, there are very large differences in the x’s.



Reduced-Rank Signal Processing

The Euclidean and Frobenius matrix norms of an /N x M matrix A of rank r
can be expressed conveniently in terms of the singular values of A:

Al|a = 01 = maximum singular value

Alp= (0} + 03+ +02)1/2

Associated with the full SVD expansion,

T
_ T T T r
A= E o;U;V; = 01U1Vy +03UaVy + - -+ 0, U,V
i=1

we define a family of reduced-rank matrices Aj, obtained by keeping only
the first & terms in the expansion:

k
A, = E Jiuiv? — Jlulvf + {Tgllgvg + .- crkukvg. E=1.2,.... r
i=1

where. A has rank £, and when &£ = 7, we have A, = A.



In terms of the original full SVD of A, we can write:

S| 0]

010 , D= diag(al.ag ..... o, 0,....0) & R™*"

r—k zeros

A, =U

A and Ay, agree in their highest & singular values. but the last » — & singular
values of A, that is, op.1,...,0,, have been replaced by zeros in Aj. The
matrices A play a special role in constructing reduced-rank matrices that
approximate the original matrix A.

The reduced-rank approximation theorem states that within the set of
N x M matrices of rank & (we assume & < r), the matrix B that most closely
approximates A in the Euclidean or the Frobenius matrix norm is the ma-
trix Ag, that is, the distance ||A — B|| is minimized over the rank-£ N x M
matrices when B = A;. The minimized matrix distance 1s:

A— Arlle = st
A—Apllp = (03 4+ 022




This theorem is an essential tool in signal processing, data compression,
statistics, principal component analysis, and other applications, such as chaotic
dynamics. meteorology. and oceanography.

In remarkably many applications the matrix A has full rank but its sin-
gular values tend to cluster into two groups, those that are large and those
that are small, that is, assuming N > M, we group the M singular values
(nto:

01209220, >0p41 2" 20N

large group small group

The following figure illustrates the typical pattern. A similar pattern arises
in the practical determination of the rank of a matrix. To infinite arithmetic
precision, a matrix A may have rank r, but to finite precision, the matrix
might acquire full rank. However, its lowest M — 7 singular values are
expected to be small.

J; A g
/ Ir
p o o /
: Or+1 oM
* . . .’/
— : > ]
12 r r+l M



The presence of a significant gap between the large and small singular val-
ues allows us to define an effective or numerical rank for the matrix A.

In least-squares solutions, the presence of small non-zero singular val-
ues may cause inaccuracies in the computation of the pseudoinverse. If the
last (M — r) small singular values are kept, then A™ would be given by,

A*zzgvu + Z—vu

i=1 i=r+1

and the last (M — r) terms would tend to dominate the expression. For this
reason, the rank and the pseudoinverse can be determined with respect to a
threshold level or tolerance, say, 0 such that if

o, <o, fori=r+1...., M

then these singular values may be set to zero and the effective rank will be r.
MATLARB'’s functions rank and pinv allow the user to specify any desired
level of tolerance.



Example

Consider the matrices:

(1 0 0 0] C0.9990 —0.0019 —0.0008 —0.0004 ]
A_ (0100 A | 0.0037 0.9999  0.0009 —0.0005
000 0" 0.0008 —0.0016  0.0010 —0.0002
00 0 0 —0.0007  0.0004  0.0004 —0.0006

where the second was obtained by adding small random numbers to the
elements of the first using the MATLAB commands:

A = zeros(4d); A(l,1)=1; A(2,2)=1; % define the matrix A
Ahat = A + 0.001\,*\,randn(size(A));

The singular values of the two matrices are:

o; = [1.0000, 1.0000, 0.0000, 0.0000]
o; = [1.0004, 0.9984, 0.0012, 0.0005]



Although A and A are very close to each other, and so are the two sets of
singular values, the corresponding pseudoinverses differ substantially:

1 00 0] [ 0.9994  0.0043 L1867 —1.0750 |
A+ — 0 1 0 0 it —0.0035 0.9992  —0.6850 —0.5451
|00 0 0 | =L.1793 2.0602 1165.3515  —406.8197

0 0 0 0 —1.8426 1.8990 701.5460 —1795.6280

This would result in completely inaccurate least-squares solutions. For ex-
ample,

1 1 0.2683 |
e I o —2.2403
b=1g] = x=A"b=1,1. x=4"b=1 e -5
A 0 _5075.9187




On the other hand, if we define
At = pinv(A, )

with a tolerance of § = 1072, which amounts to setting o3 = o4 = 0, we
get acceptable results:

1.0010  0.0020  0.0008 —0.0007]
Qe |—0.0037 10001 —0.0016  0.0004|
= 10,0008  0.0009 —0.0000  0.0000
|—0.0004 —0.0005  0.0000  0.0000
1.0043 ]
o 1.0934
_ Ath —
X=A"b =11 0010
—0.0014

To avoid such potential pitfalls in solving least squares problems, one may
calculate first the singular values of A and then make a decision as to the
effective rank of A.



In the previous example, we saw that a small change in A caused a small
change in the singular values. The following theorem establishes this prop-
erty formally. If A and A are N xM matrices with N > M. then their
singular values differ by:

max |6, — o] <||JA— A

1<i<M 2
M
Z |6; — oi” < [|[A = Al
i—1

In signal processing applications, we think of the large group of singular
values as arising from a desired signal or dynamics, and the small group as
arising from noise.

Often, the choice of the r that separates the large from the small group
Is unambiguous. Sometimes, it is ambiguous and we may need to choose it
by trial and error. Replacing the original matrix A by its rank-r approxima-
tion tends to reduce the effects of noise and enhance the desired signal.



The construction procedure for the rank-r approximation is as follows. As-
suming N > M and starting with the economy SVD of A, we may partition
the singular values as follows,

g7 77 ’-ET‘ U-‘ U’;T] vl e T, 3
A=[U,|U, L 0 ‘ i J [T‘:;T J =NV + UMV =A, 4+ A,
where ¥, = diag(oy. .. .. o, ) and ET = diag(o,yq. .. .. o). and we set

T T -ET' ‘ (]- -1:T- _TT T

A =010 To] o] = U

S L U B 5 -

A, =U, | U] 0 ‘ 5N _ff_ = U, XV,

where
= RNXT ‘ {:rr c Rh"x(ﬂf{ —r) R VA= RM’ X ? {,; c RM x (M —r)

We will refer to A, as the signal subspace part of A and to A, as the noise
subspace part. The two parts are mutually orthogonal, that is, AT A, =
0. Similarly, X and Y. are called the signal subspace and noise subspace
singular values.



Example

Consider the following 4 x 3 matrix:

Its full SVD 1s:

UXvt =

The economy SVD is:

0.5 0.5
—0.5 —=0.5
0.5 —=0.5
—0.5 0.5

0.5 0.5
—0.5 —0.5
0.5 —=0.5
—0.5 0.5

[ —0.16
0.08
3.76

| —3.68

(a) Q) by Ry {
p— e e e
S S S S

A0 AR S S

10
0
0

—0.13
0.19
4.93

—4.99

(10 0
0 8
0 0

0 0

0 0
8 0
0 0.1

G.40 |
—6.40
1.60

~1.60 |

0.1
0

0.36
0.48
0.80

0.36
0.48

0
0 {

—0.48
—0.64
0.60

—0.48
—0.64

0.80
—0.60
0.00

0.80
—0.60
L[l_ 80 0.60  0.00 J

X

T



The singular values are {oy,09.03} = {10, 8, 0.1}. The first two are
“large” and we attribute them to the signal part, whereas the third is “small”
and we assume that it 1s due to noise. The matrix A may be replaced by its
rank-2 version by setting o3 = (). The resulting signal subspace part of A is:

1= E _ Kk
sy Tl 0 0] [os6 —04s 0s0]"
A=|"0s _ox o=l |0 8 0[]048 -0.64 —0.60
B [;]-'; [}*;j tm; 0 0 0| 080 060 0.00
which gives: ) i
—0.12 —0.16  6.40
A | 012 016 —6.40
" 372 496  1.60
| —3.72 —4.96 —1.60
(—0.16 —0.13  6.40]
L | 008 019 —640

376 493 1.60
~3.68 —4.99 —1.60




The full SVD of A,. and the one generated by MATLAB are:

0.5 05 —05 05] [10

4 —0.5 =05 =05 05] 10
St 05 =05 05 05] 0
—0.5 05 05 0510

[ 05 05 —0.6325 —0.3162]

A — |05 —05 —0.6325 —0.3162
"0 05 =05 —0.3162  0.6325
—0.5 0.5 —0.3162  0.6325

0 0]
8 0
0 0

0 0]

10
0
0
0

0
8
0
0

0
0
0
0

0.36
0.48
0.80

048 08017

—0.64 —0.60
0.60  0.00

ij_:as —0.48 [}.g[jrf
0.48 —0.64 —0.60
L(ﬁl_S(] 0.60 [:-.[}UJ

As usual, the last two columns of the U’s are related by a 2x2 orthogonal

matrix.



The AOSP MATLAB function sigsub constructs both the signal and noise
subspace parts of a data matrix. It has usage:

Usage: [¥Ys,¥Yn,S] = sigsub(Y,r)

Y Nx(M+1) data matrix (with N > M+1)

r = rank of the signal subspace (must have r <= M)

Nx (M+1) data matrix of signal subspace
Nx (M+1) data matrix of noise subspace
all M+1 singular values of Y

Yn
s

for sinusoids in noise, r = number of complex sinuscids

%
%
%
%
%
% Ys
%
%
%
%
% for angle-of-arrival estimation, r = number of plane waves

Signal processing methods based on rank reduction are collectively referred
to as

SVD signal enhancement methods, or,
reduced-rank signal processing methods, or simply,

subspace methods



One of the earliest applications of such methods was in image compression,
essentially via the Karhunen-Loeve transform.

A typical black and white image is represented by a square N x /N
matrix, where N depends on the resolution, but typical values are N =
256,512, 1024. A color image is represented by three such matrices, one for
each primary color (red, green, blue.)

The N singular values of an image matrix drop rapidly to zero. Keep-
ing only the r largest singular values leads to the approximation:

A, = Jlulvf - nglgvg 4.4 ou,v

I

Data compression arises because each term in the expansion requires the
storage of 2N coefficients, that is, N coefficients for each of the vectors
o;u; and v,. Thus, the total number of coefficients to be stored 1s 2N 7.

Compression takes place as long as this is less than N2, the total num-
ber of matrix elements of the original image. Thus, we require 2Nr < N?
or r < N/2. In practice, typical values of r that work well are of the order
of N/6to N/5.



Example

The figure below shows the singular values of a 512x512 image. They
were computed by first removing the column means of the image and then
performing a full SVD. The singular values become small after the first 100.

Singular Values

Singular Values

0.9} - .................. .................. .................. _
11 S S S— A— A S—
L EE S — SR —
L% RS S — SR R—
NS 1 S S N ST S
e’ : ; ; ; ; ;

014_'....1 .................. '. .................. L.....J .................. '._

03] kb A AU S
R — SN S—-——

0.1 N SR A S—

1 100 200 300 400 500 1 20 40 60 80 100

The figure below shows the original image and the image reconstructed on
the basis of the first 100 singular values. The typical MATLAB code was as
follows:



[B,M] =
[U,S,V] = svd(B);
100;

M +-Tl:, 1)

B =
AT =
Ar

figure; image(A);

figure;

imread(’'stream.tiff’,

zmean (double(A) ) ;

% S{1t¥ 4.:8)

uint8 (round(Ar)) ;

“Eiff’) ;

Vil L) b

colormap (’'gray(256) ') ;

image (Ar); colormap(’gray(256)’);

oP

size 512x512

read image file,

remove and save mean
perform svd

image from first r components
convert to unsigned 8-bit int

display image

The function zmean removes the mean of each column and saves it. After
rank-reduction, the matrix of the means is added back to the image.



Karhunen-Loeve Transform

Traditionally, the Karhunen-Loeve transform (KLT), also known as the Hotelling
transform, of an ( M +1)-dimensional stationary zero-mean (complex-valued)
random signal vector y (n) with covariance matrix R,

Yo(n)

y1(n)

Yy =| " R=Eym)y(n)

w w

Ly (n) |

1s defined as the linear transformation:

z(n) = V%y(n) (KLT)

where V' is the (M + 1)x (M + 1) unitary matrix of eigenvectors of R,
V=1[vg,Vi,.... vul, Rvi=XNv,, 1=0.1,..., M

with the eigenvalues A; assumed to be in decreasing order. The orthonor-
mality of the eigenvectors, viv j = 045, 1s equivalent to the unitarity of V',

i

VIV = VIV = Ly



The eigenvalue equations can be written compactly in the form:
RV =VA, A=diag{l\, \i..... Ay} = VRV =4

The components of the transformed vector,

Z(n) =

| zar(n)

are called principal components. They can be expressed as the dot products
of the eigenvectors v; with y(n):

_ NI](H') - B é},(n) -
z(n)= Viy(n) = AIEHJ = ' }:(HJ . or,
|2y (n) | Viy(n)




These may be thought of as the “filtering” of y(n) by the “FIR filters™ v;.
Therefore, the vectors v; are often referred to as eigenfilters.

The principal components are mutually orthogonal, that is, mutually
uncorrelated. The diagonal matrix, VTRV = A, is the covariance matrix of
the transformed vector z(n):

Elz'(n)z'(n)] = VIE]y (n)y!(n)]V = VIRV . or,

E[z*(n)z'(n)] = A

or, component-wise:

E[zX(n)zj(n)] = Nidyj |, 4,5=0,1,..., M

Thus, the KLT decorrelates the components of the vector y(n). The eigen-
values of R are the variances of the principal components,

o} = E[|z(n)]?] = A

Because \g > Ay > --- > Ay, the principal component zp(n) will have the
largest variance, the component z1(n ), the next to largest, and so on.



Defining the total variance of y(n) to be the sum of the variances of its
M + 1 components, we can show that the total variance is equal to the sum
of the variances of the principal components, or the sum of the eigenvalues
of K. We have:

M
Jj = Z E[lyi(n)]*] = Ely(n)y(n)] (total variance)
=0

Using the trace property,
vy = t(y'y")

we find:
5

2=w(Ey'(n)y"(n)]) =t(R). or.
CI;:)\[}‘;‘/\l—F'“—F)\Mr:U§+{rf+...+g§f



The inverse Karhunen-Loe¢ve transform 1s obtained by noting that
vl — 1+

which follows from VTV = I. Therefore,

3.7(-_”_) — I;"?*Z(ﬂ.) (i]‘WEl‘SB KLT)

[t can be written as a sum of the individual principal components:
C zp(n)
“0(n) y
T * #* * ﬁ;’l(ﬁ) *
y(n)=V*z(n)=[v),v],...,vy] : = E v:zi(n)
' i=0

| M ( ﬂ-) i




In many applications, the first few principal components, for example, z;(n),
0 <i<r—1,wherer < M + 1, account for most of the total variance. In
such cases, we may keep only the first r terms in the inverse transform:

r—1

y(n) =Y viz(n)

1=0

If the ignored eigenvalues are small. the reconstructed signal y () will be a
good approximation of the original y (7).

This approximation amounts to a rank-r reduction of the original prob-
lem. The mean-square approximation error is:

M
3’-3'('”-)\2 = Z Ai
i=r

M

y(n) =y =B >

i=r

£l




Principal Component Analysis

Principal component analysis (PCA) is essentially equivalent to KLT. The
only difference is that instead of applying the KLT to the theoretical covari-
ance matrix R, it is applied to the sample covariance matrix £ constructed
from N available signal vectors,y(n),n=10,1,..., N —1:

1 N-1
f= 5 2 Yy

where we assume that the sample means have been removed, so that

We will ignore the overall factor 1 /N, and work with the simpler definition:

T y(0) T
N-1 T
. , (1
R = E yi(n)y'(n) =YY, y=| " { |
n=>0 . _
YT(N = 1)

where Y is the N x (M + 1) data matrix constructed from the y(n).



The eigenproblem of R, that is.
RV =V/A

defines the KLT/PCA transformation matrix V. The corresponding princi-
pal component signals will be:

z(n)=V'y(n). n=0.1. ..., N —1

These can be combined into a single compact equation involving the data
matrix constructed from the z(n). Noting that, z'(n) = y*(n)V, we have:

Z =YV (PCA)

where 7 is the N x (M + 1) data matrix of the z(n):




The inverse transform can be obtained by multiplying by VT from the right
and using the unitarity property of V', thatis, ZVI = YVVI =Y,

Y=2Vl = ymn)=Vzhn), n=01... N1

or, explicitly in terms of the PCA signals, z;(n) = vy (n).

M
y(n)= Z vizin), n=01,...,1 N —1
i=0

The uncorrelatedness property of the KLT translates now to the orthogo-
nality of the signals, z;(n) = vIy(n), as functions of time. It follows that
Z has orthogonal columns, or equivalently, a diagonal sample covariance
matrix:

F

<
I

—_—

ZZ=VIRV=A = Y z(n)z'(n)=A

or, written component-wise:

N—
2¥(n)zi(n) = Nidij |, 4,5 =0,1,..., M
=0

—

=




In fact, the principal component signals z;(n) are, up to a scale, equal to the
left singular eigenvectors of the SVD of the data matrix Y, 1.e.. Z = UX.

Following the simplified proof of the SVD that we gave earlier, we
assume a full-rank case so that all the A; are nonzero and define the singular
values, o; = \/\;, fori = 0.1,..., M, and the matrices:

U=2zY"1 X =dag{og 0. ....00}=A"?

where U, X have sizes N x (M + 1) and (M + 1)x(M + 1), respectively. It
follows that {7 has orthonormal columns:

Ut = Y- 171751 = A7124412 = Inrsa

Solving for Y in terms of I/, we obtain the economy SVD of Y. Indeed. we
have. Z = UX, and. Y = ZV, so that

Y =UXvT (economy SVD)




Thus, principal component analysis based on R is equivalent to performing
the economy SVD of the data matrix Y.

The matrix U7 has the same size as Y, but mutually orthogonal columns.
The (M + 1)-dimensional vectors

uln)=YX"'z(n) =2 Vlyn), n=0,1,.... N—1

have U as their data matrix and correspond to normalized versions of the
principal components with unit sample covariance matrix:

UtU —Zu n) nr )=1Iys1 & Zu n)u;j(n) = 0;;

n=>0

where u;(n) 1s the ith component of

" up(n) T

a(n) = -ulg?’?)

Lupr(n)

It is the same as z;(n), but normalized to unit norm.



Example

Consider the following 8 x2 data matrix Y and its economy SVD:

- 231
2.49
—2.31
~2.49
3.32
—3.08
3.08

| _3.32

1.927

1.68

—1.92
—1.68

2.24
56
56
2.24

2D D

- 0.3
0.3
—0.3
—0.3
0.4
—0.4
0.4

| 0.4

0.3
0.3
0.3
0.3 [10
04|10
0.4
0.4
0.4 ]

0
0.5

|

0.8
0.6

—0.6
0.8

T

The singular values of Y are og = 10 and oy = 0.5. Let the two columns of

Y be y, and y, so that,

Y = [}’n- }’1]

The scatterplot of the eight pairs [y, y1| is shown below. We observe the
clustering along a preferential direction. This is the direction of the first

principal component.



ot

S
! caj:terplot of [y, y4l
. g ! ' - 1




The corresponding 8x2 matrix of principal components and its diagonal
covariance matrix are:

"3 015
3 —0.15
—3 —0.15
| : —3 015 v, [o8 0 100 0
Z=lon]=U=1 " o A=Z72= [[) gi‘] N l 0 0,2:;]
—4 —0.20
4020
—4 020

The covariance matrix of Y, R = YTV . is diagonalized by the matrix V':

5 [64.09 47.88] _[08 —0.6] [100 0 ][08 —0.6 T_I_,—,ﬂ,-;r
T 14788 36.16] ~ (0.6 08| 0 025|]06 08| TV



Each principal component pair [z, z1] is constructed by the following
combinations of the [y, y1| pairs:

;g:::vgjr:: ILS.UIH [g?} ::ELSyg-+(le1

2 =vly =[=0.6,0.8] [gﬂ = —0.6y0 + 0.8y,

Conversely. each [yo, 1] pair may be reconstructed from the PCA pair

linear

:Zg.zlk

~1

Y| trer e o [20] e L oe  [08] | [-0.6]
[m] =Viz =il [.:1] — Voo Vis = [[}.G] 0T [ 0.8]

The two terms in this expression define parametrically two straight lines on
the vp, y1 plane along the directions of the principal components, as shown

in the above figure. The percentage variances carried by zg, z; are:

2 2
0 00075 = 09.75% . —t = 0.0025 = 0.25%
ap + a7 ap + oF]

This explains the clustering along the z( direction.



Example

The table below gives N = 24 values of the signals, yZ(n) = [yo(n), y1(n)].
The data represent the measured lengths and widths of 24 female turtles and
were obtained from the file turtle.dat. This data set represents one of the

most well-known examples of PCA.

The data matrix Y has dimension N x (M 4 1) = 24 x2. It must be re-
placed by its zero-mean version, that is, with the column means removed
from each column. The figure below shows the scatterplot of the pairs

[yﬂ- yl]-
n yo(n) wi(n)| n yo(n) vi(n)| n yo(n) wyi(n)
0 98 81 8 133 102 |16 149 107
1 103 84 9 133 102 |17 153 107
2 103 86 |10 134 100 |18 155 115
3 105 86 |11 136 102 |19 155 117
4 109 88 |12 137 98 |20 158 115
5 123 92 |13 138 99 121 159 118
6 123 95 |14 141 103 |22 162 124
7 133 99 |15 147 108 |23 177 132




Scatterplot of [ yq, vl

Scatterplot of [ ug, u4]




We observe that the pairs are distributed essentially one-dimensionally along
a particular direction, which is the direction of the first principal component.

Performing the economy SVD on (the zero-mean version of) Y gives
the singular values, o9 = 119.05 and oy = 12.38, and the unitary PCA
transformation matrix V'

V= [vo.vi] = 0.8542  —0.5200 S 0.8542 Vi —0.5200
T EETET05200 0 085420 0T 10520000 T T | 0.8542
The total variance is 05 = 04 + 0. The percentages of this variance carried
by the two principal components are:

2 2
20— 0989 =089%, —t—=0011=11%
on -+ o ag —+ a9

Thus, the principal component zy carries the bulk of the variance. The two
principal components are obtained by the linear combinations z = V7'y, or,

0= vly = 0.8542 yp + 0.52 4,
2 =vly = —0.52y0 + 0.8542

The 1nverse relationships are v = V*z = vz + vz, or,
0 1

yo| _ [08542] - [=0.5200]
yr |~ 10.5200| ~° 0.8542 |



The two terms represent the projections of y onto the two PCA directions.
The two straight lines shown in the left figure above are given by these
two terms separately, where zy and z; can be used to parametrize points
along these lines. The MATLAB code used to generate this example was as
follows:

Y = loadfile(’'turtle.dat’); % read full data set

Y = zmean (¥ (:,4:5)); % columns 4,5, remove column means
[U,8,V] = svd(Y,0); % economy SVD

figure; plot(¥Y(:,1),¥Y{:,2), "V:; % scatterplot of [v0,vl]

figure; plot(U(:,1),U(:,2),'."); % scatterplot of [ul,ul]

The right graph above is the scatterplot of the columns of U/, that is, the
unit-norm principal components ug(n), u1(n). n = 0,1,..., N — 1. Be-
ing mutually uncorrelated, they do not exhibit clustering along any special
directions.

PCA has several applications in diverse fields, such as statistics, phys-
10logy, psychology, meteorology, and computer vision.



SVD and Signal Processing

In many signal processing applications, such as Wiener filtering and linear
prediction, the SVD appears naturally in the context of solving the normal
equations. The optimum order-AM Wiener filter for estimating a signal x(n)
on the basis of the signals {yo(n).y1(n),..., yprr(n)} satisfies the normal
equations:

Rh =r., where R = E[y'(n)yl(n)]. r=E[z(n)yi(n)]

where we assumed stationarity and complex-valued signals. The optimum
estimate of x(n) is given by the linear combination:

" yo(n) ] .
y1(n .
r(n) = hTy(_n.) = |ho, h1, ..., ha] Jl; ) = Z R Y (1)
’ m=I[)
Lynm(n)

The observation signals v,,,(n) are typically (but not necessarily) either the
outputs of a tapped delay line whose input i1s a single time signal v,,. so that
Ym (1) = Yp_pm, Or, alternatively, they are the outputs of an antenna (or other
spatial sensor) array. The two cases are depicted below.



Yn * > Vn
z-1
¢—>)7n—1
z-1

tapped delay line

The vector y(n) is defined as:

Un
Un—1
y (ﬂ ) — Un—2

| Yn—M _

Or,

y(n)

— | y2(n)

>—> y()(n)
>—> yl(n)
>—> yz(n)

> ) M(I’l)

antenna array

[ Yo(n2)

yi1(n)

L ynr(n)



In the array case, y(n) is called a snapshot vector because it represents the
measurement of the wave field across the array at the nth time instant. The
autocorrelation matrix R measures spatial correlations among the antenna
elements, that is, R;; = Elyi(n)y;(n)].i,5,=0,1,..., M.

In the time-series case, R measures femporal correlations between
successive samples of v, thatis, R;; = Ely) . yn—j| = Elynti—; yl] =
R(i— 7). where we used the stationarity assumption to shift the time indices
and defined the autocorrelation function of v, by:

R(k) = EYnsi U]

The normal equations are derived from the requirement that the optimum
weights h = [hg, hq, ..., h.M]T minimize the mean-square estimation error:

£ = Elle(n)?] = E[jz(n) — &(n)|?] = Ellz(n) — hTy(n)[*] = min



The minimization condition is equivalent to the orthogonality equations,
which are equivalent to the normal equations:

Ele(n)y’(n)] =0 <«  E[y'(n)y’(n)h = E[z(n)y’(n)

Setting
R=Ely(n)y"(n)]. r=Ele(n)y(n)

we find for the optimum weights and the optimum estimate of z(n):
h = Ely*(n)y (n)] " Elz(n)y'(n)] = B~'r

#(n) = h"y(n) = Ele(n)y (n)|Ely (n)yi(n)] 'y (n



In practice, we may replace the above statistical expectation values by time-
averages based on a finite, but stationary, set of time samples of the signals
r(n)and y(n),n = 0,1,..., N — 1, where typically N > M. Thus, we
make the replacements:

. N-1
- 1
R= By = R=< > vy
T =0
| Nl
r = Ely(n)z(n)] = r= v yi(n)z(n)
o n=>0
| N
Ely{(n)e(n)] =0 = ~ yi(n)e(n) =0
a n=>0

To simplify the expressions, we will drop the common factor 1/N in the
above time-averages.



Next, we define the Nx (M + 1) data matrix Y whose rows are the N
snapshots y(n),

CoyT0) T T wo(0) u(0) o uar(0)

vI(1) yo(1) yy (1) ym (1)

b= },Ti.ﬁ) - 'yﬂ(l, n) 'ylé?l-) ' ym(n)
YIN=D] LoV 1) m(N=1) (N 1),

The ni-th matrix element of the data matrix is Y,,; = y;(n). 0 <n < N —1,
0 <@ < M. In particular, in the time series case, we have Y,,; = v,,_,;. The
N x1 column vectors of the x(n), e(n), and the estimates z(n) are:

C O 2(0) ] T () ] CA0) T
2(1) e(1) (1)
Sl €= ) =1 0
(N =1)] (N 1) (N —1)]



Noting that YT = Y*T = [y*0).y*(1)..... vy (N — 1)|. we may express the
sample correlation matrices in the following compact forms (without the
1 /N factor):

R=Y'Y
r=Y'x
Yie =0
Indeed, we have:
N1 ERADE
> * T *f (- * AT - yT(l) Ve Vs
R=Yyi(n)y'(n)=[y(0).y(1).....y(N —1)] : 20
n=>0 '
yI(N - 1)
T 2(0) 7
— # s * 0 NT T(J_J T
r = yin)x(n) =[y%0),y(1),.... V(N —1)] : = Y'x
n=0 )
Lo(N —1) ]




Similarly, we have for the column vectors of, z(n) = y?(n)h. and, e(n),
x =Yh, e=X—x=X—Yh
The theoretical performance index is replaced by the least-squares index:

£ = E[|e(n)|*] = min

N—1
€= le(n)]* =ele =|x = Yh|*> = min

n=(0

The minimization of the least-squares index with respect to h gives rise to
the orthogonality and normal equations,

Yie=0. YiYh=VYix = Rh=r



Thus, we recognize that replacing the theoretical normal equations h =r
by their time-averaged versions Rh = r is equivalent to solving—in the
least-squares sense—the overdetermined N x (M + 1) linear system:

Yh =x

The SVD of the data matrix. Y = UX VT, can used to characterize the nature
of the solutions of these equations. The min-norm and backslash solutions
are in MATLAB’s notation:

h=pinv(Y)*x, h=Y\x

Since N > M -+ 1, these will be the same if Y has full rank. that 1s, r =
M + 1. In this case, the solution is unique and is given by:

h=(VY)'Yix=R%  (full rank )



In the time-series case, some further clarification of the definition of the data
matrix Y is necessary. Since, ¥, (1) = y,_m. the estimate x(n) is obtained
by convolving the order- M filter h with the sequence v,,:

Z hml,fm ?1 Z thn m

m=0

For a length-N input signal y,. n = 0,1, ..., N — 1, the output sequence
x(n) will have length N+ M, with the first M DUIpUI samples corresponding
to the input-on transients, the last M outputs being the input-off transients,
and the middle N — M samples, z(n), n = M, ..., N — 1, being the steady-
state outputs.

There are several possible choices in defining the range of summation
over n in the least-squares index:

= le(n))?



One can consider:

(a) the full range, 0 < n < N — 1+ M, referred to as the autocorrelation
method

(b) the steady-state range, M < n < N — 1, referred to as the covariance
method

(c) the pre-windowed range, 0 <n < N — 1, or,
(d) the post-windowed range, M <n < N — 14+ M.

The autocorrelation and covariance choices are the most widely used:

N—14+M N-1
Eaut = Z e(-n.)|2. Ecov = Z |e(-n)\2
n=>0 n=M

The minimization of these indices leads to the least-squares equations
Yh=x

where Y 1s defined as follows.



First, we define the input-on and input-off parts of Y in terms of the first M
and last M data vectors:

[ y'(0) W [ y'(N) "
Y, — . . .

}off — L

L}-'T[;L; — l)J | yI(N —:1 + ﬂ[)J

Then, we define Y for the autocorrelation and covariance cases:

yZ(0)
yI(M —1)
T} Vi 1)
Yoiur = = 1 Yeov | - Yeov =
},T(A.r _ 1) _}’:}ff i {E’T(;\-r — I)J
y'(N)
_}’T(A’T —1 + Jlr)_



To clarify these expressions, consider an example where N = 6 and M = 2.
The observation sequence is y,. n = 0,1,...,5. Noting that v, 1s causal
and that it 1s zero for n > 6, we have:

yg U 0

yi Yo 0 ) )

Y2 Y1 Yo Y2 Y1 Yo
Yy = Ys Y2 v Vigw = Ys Y2 U

Y4 Yz Y2 Y4 Y3 Y2

Ys Ya Y3 | Y5 Y4 U3

0 vy ya

0 0 uys

These follow from the definition

}FT(.'”) — [yn- Yn—1- yn—?}

which gives, yZ(0) = [yo. y_1.y_3] = [10. 0. 0]. and so on until the last time
sampleatn =N — 1+ M =6—14+2 =7, thatis, y(7) = [yr, ys, us] =
0,0, y5]. The middle portion of Yy is the covariance version Y.



The autocorrelation version, Y. 1s recognized as the ordinary Toeplitz con-
volution matrix for a length-6 input signal and an order-2 filter. It can be
constructed easily by invoking MATLAB's built-in function convmtx:

Y = convmtx (y,M+1) ; % v 1s a column vector of time samples
The least-squares linear system Yh = x for determining the optimum
weights h = [hg, iy, he|T reads as follows in the two cases:

_y[} 0 07 _.’1’?{]_

vi v 0 T ] i -

Y2 Y1 Yo / L2 Y2 U1 Yo 7 L3

1) [y

Yz Y2 [ 51-1-‘ _ |3 Ys Y2 [ 31-1-‘ _ | T3

Ys Y3 Y2 h‘QJ Ty | Ys Yz Y2 L h-gJ Ty

s Ya Y3 L5 | Ys  Ya Y3 | 5

0 us ua L'

00 s | 27

where the signal z(n) was available for, 0 <n < N -1+ M =T.



There 1s yet a third type of a data matrix that is used in linear prediction
applications. It corresponds to the modified covariance method, also known
as the forward-backward method.

The data matrix is obtained by appending its row-reversed and complex-
conjugated version. For our example, this gives:

Y2 Y1 Yo
Yys Y2 W
Ys Yz Y2
Vi = UYs Yq Y3 _ Y{E:m'
uo Ui v Yov/
Y Ys U3
Ys Y3 Uy
L Y3 U5 Us

where .J 1s the usual reversing matrix consisting of ones along its antidiag-
onal. While Y, and Y, are Toeplitz matrices, only the upper half of Yy, 1s
Toeplitz whereas its lower half is a Hankel matrix. that is. it has the same
entries along each antidiagonal.



Given one of the three types of a data matrix Y, one can extract the signal
Y, that generated that Y. The MATLAB function datamat (in the AOSP
toolbox) constructs a data matrix from the signal v,,, whereas the function
datasig extracts the signal v,, from Y, depending of the assumed type of the
data matrix. The functions have usage:

Y = datamat(y,M, type) ;
v = datasig(Y, type);

% type = 0,1,2, for autocorrelation, covariance, F/B



Least-Squares Linear Prediction

Next, we discuss briefly how linear prediction problems can be solved in a
least-squares sense. For an order-M predictor, we define the forward and
backward prediction errors in terms of the forward and reversed-conjugated
filters:

- -
aq T
E—l—(”‘) - [yw Yn—1+-- -, y-n—M'] : =Y ('?1-)3
[ A pr
ot
: T R
e_(n) = [Yn, Yn—1,- . .. Un-m] | | =y (n)a™
aj
L1
where -
apny
all =
lq
L1

denotes the reversed prediction-error filter.



The prediction coefficients a are found by minimizing one of the three least-
square performance indices, corresponding to the autocorrelation, covari-
ance, and forward/backward methods,

N-1+M

gaut — Z |€+(n)‘2 = min
n=0
N—-1

gcov — Z

n=M
N-1

En= Y [le+(n)]> +]e—(n)*] = min

n=NM

2 — min

et ()]



Stacking the samples e (n) into a column vector, we may express the er-
ror vectors in terms of the corresponding autocorrelation or covariance data
matrices:

e, =Ya
e_ =Yal®
where,
_ _ T — VY
e. = les(n)| =|y'(n)]a=Ya




Noting that a’ = .Ja, we have for the covariance case:

TE

e_ =YJa® = el = (Y, )a

Then, we may define the extended error vector consisting of both the for-
ward and backward errors:

Cfes] [Yew ]l o
[1] -]

cov

Noting that, efe = el e, + e’ e_, we may express the three performance
indices in the compact forms:

éaut = E:_e_|_ = ||e_|_H‘2 — | 1}Tf,lut‘l'aHZ
Ecv =ehe. = |le.]> = [[Yeva?

.|_

En=eles +ele_ =|les[’ + [le_|* = [le|* = [ Yna]”




Thus, in all three cases, the problem reduces to the least-squares solution of
the linear equation Ya = 0, that s,

Ya=0 <& &=]|e|?=|Yal?®=min

subject to the constraint, ag = 1. The solution is obtained by separating the
first column of the matrix Y in order to take the constraint into account,

8

. . 1
Y =y, Y1] and a = [ }
which gives the equivalent linear system:
e x 1 ks f
Ya=[yq Y] o =yVyg+Yia=0 = Y a=-y,
The minimum-norm least-squares solution is obtained by the pseudoinverse:

= ra 4 1 1
a=—pinv(Y]) xy, =Yy, = a= [a] - [— 1+}’0]



The AOSP function Ipls implements this procedure. It has usage:

[a,E] = 1pls(Y); % least-squares linear prediction filter

where £ is the minimized prediction error E = ||e||?/L, where L is the
column dimension of Y. Combined with the function datamat, one can
obtain the prediction filter according to the three criteria:

la,E] = lpls(datamat(y,M,0)); % autocorrelation, Yule-Walker
la,E] = lpls(datamat(y,M,1)); % covariance
[a,E] = lpls(datamat(v,M,2)); % modified covariance, F/B method

The autocorrelation method can be computed by the alternative call to the
Yule-Walker AOSP function yw :

a = lpf(yw(y,M)); % autocorrelation, Yule-Walker method

Further improvements of these methods result, especially in the case of ex-
tracting sinusoids in noise, when the least-squares solution is used in con-
junction with the SVD enhancement iteration procedure discussed below.

Among the three criteria, only the autocorrelation method is guaranteed to result
Into a minimum-phase filter, a, that is, having zeros inside the unit-circle.
Burg’s method (see AOSP Sect. 12.12) is yet another method that guarantees the
minimum-phase property and generally works better than the other methods.




SVD Signal Enhancement

The main 1dea of PCA 1is rank reduction for the purpose of reducing the
dimensionality of the problem. In many signal processing applications, such
as sinusoids in noise, or plane waves incident on an array, the noise-free
signal has a data matrix of reduced rank. For example, the rank is equal to
the number of (complex) sinusoids that are present.

The presence of noise causes the data matrix to become full rank. Forc-
ing the rank back to what it 1s supposed to be in the absence of noise has a
beneficial noise-reduction or signal-enhancement effect.

However, rank-reduction ruins any special structure that the data ma-
trix might have, for example, being Toeplitz or Toeplitz over Hankel. A
further step 1s required after rank reduction that restores the special struc-
ture of the matrix.

But when the structure is restored, the rank becomes full again. There-
fore, one must iterate this process of rank-reduction followed by structure
restoration.



Given an initial data matrix of a given type, such as the autocorrelation,
covariance, or forward/backward type. the following steps implement the
typical SVD enhancement iteration:

Y = datamat(vyv,M, type) ;
Ye = ¥;
for 1=1:K,
Ye = sigsub(Ye,r);
Ye = toepl (Ye, type) ;
end
ve = datasig(Ye, type);

%
%
%
%
%

%

construct data matrix from signal vy
initialize enhancement iteration
iterate K times, typically, E=2-3
force rank reduction to rank r
restore Toeplitz/Hankel structure

extract enhanced signal from Ye

After the iteration, one may extract the “enhanced” signal from the enhanced

data matrix.

The AOSP function sigsub. carries out an economy SVD of Y and
then keeps only the r largest singular values, that is, it extracts the signal

subspace part of Y.

The function toepl, discussed below, restores the Toeplitz or Toeplitz-
over-Hankel structure by finding the matrix with such structure that lies
closest to the rank-reduced data matrix.



The SVD enhancement iteration method has been re-invented in different
contexts. In the context of linear prediction and extracting sinusoids in noise
it is known as the Cadzow iteration.

In the context of chaotic dynamics, climatology, and meteorology, it
1S known as singular spectrum analysis (SSA), and sometimes also called
“singular system analysis™, or the “caterpillar” method — actually, in SSA
only one iteration (/A = 1) is used.

In nonlinear dynamics, the process of forming the data matrix Y is
referred to as delay-coordinate embedding and the number of columns of
Y. thatis, M -+ 1. is the embedding dimension.

In the literature, one often finds that the data matrix Y is defined as a
Hankel instead of a Toeplitz matrix. This corresponds to reversing the rows
of the Toeplitz definition. For example, using the reversing matrix ./,

Y2 Y1 Yo Yo Y1 Y2
ys Yz Yyr Y2 Y3
Y= |ys ys y2| =Toeplitz = Y.J= |y2 wys wys| = Hankel
Ys Ys Y3 Ys Y4 Ys
| Y6 Ys Y2 ] (Y4 Us Ys

In such cases. in the SVD enhancement iterations one must invoke the func-
tion toepl with its Hankel option, that is, type=1.



Example

As an example that illustrates the degree of enhancement obtained from such
methods, consider the length-25 signal v, listed in the file sinel.dat on the
AOSP web page. The signal consists of two equal-amplitude sinusoids of
frequencies f; = 0.20 and f5 = 0.25 cycles/sample, in zero-mean, white
gaussian noise with a 0-dB SNR. The signal samples were generated by:

Yp = cos(2mfin) + cos(2mfon) +0.707v,. n=0.1,..., 24

where v,, s zero-mean, unit-variance, white noise, and the amplitude 1/ V2 =
0.707 ensures that SNR = 0 dB.

The short duration and the low SNR make this a difficult signal to han-
dle. The figure below compares the performance of four spectrum estima-
tion methods: the ordinary periodogram, the linear-prediction-based meth-
ods of Burg and Yule-Walker, and the SVD-enhanced Burg method in which
the SVD-enhanced signal 1s subjected to Burg’s algorithm, instead of the
original signal.
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The effective rank is » = 4 (each real sinusoid counts for two complex
ones.) The SVD-enhanced version of Burg’s method gives narrow peaks at
the two desired frequencies. The number of iterations was ' = 3, and the
prediction filter order M = 20.

The Yule-Walker method results in fairly wide peaks at the two fre-
quencies, the SNR is just too small for the method to work. The ordinary
Burg method gives narrower peaks, but because the filter order M 1s high., it
also produces several false peaks that are just as narrow.




Reducing the order of the prediction filter from M down to 7, as is
done in the SVD method to avoid any false peaks, will not work at all for
the Yule-Walker and ordinary Burg methods—both will fail to resolve the
peaks.

The periodogram exhibits wide mainlobes and sidelobes—the signal
duration is just too short to make the mainlobes narrow enough. If the sig-
nal 1s windowed prior to computing the periodogram, for example, using a
Hamming window, the two mainlobes will broaden so much that they will
overlap with each other, masking completely the frequency peaks.

The graph on the right above makes the length even shorter, N = 15,
by using only the first 15 samples of ,,. The SVD method, implemented
with M = 10, still exhibits the two narrow peaks, whereas all of the other
methods fail, with the ordinary Burg being a little better than the others, but
still exhibiting a false peak. The SVD method works well also for ' = 2
iterations, but not so well for A’ = 1.



The following MATLAB code illustrates the computational steps for pro-
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H1
H1

HZ

H2

H3
H3

et
Il
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for

end
ve

a
H
H

plo

o these graphs:
loadfile( sinel.dat’);
4. M = 20; K = 3;

linspace(0.1,0.4,401) ;
2+pixf;

lpf (burg(v,M) ) ;
= 1./abs{dtftia,w));
= 20+*1ogl0{Hl/max(H1));

lpf (ywily, M) ) ;
1./abs({dcftia,w));
20+1logl0{H2 /max(HZ2) ) ;

abs(dtftiv,w));
20+1logl0{H3 /max(H3) ) ;

datamat (v, M) ;
= ¥:

i=1:EK,

Te sigsubl(Ye,r);
Te toepl (Ye) ;

= datasigi{¥Ye);

lpf(burgi{ve,r));
1./abs({dtftia,w)):
20+#1logl0{H/max(H)) ;

t(£,H,'-", £,H1,"--", £, HZ, " :

L =I-

=

read signal samples y{n) from file
rank, filter order, number of iterations
frequency band

Burg prediction filter of order M
compute crdinary Burg LP spectrum
spectrum in dB

Tule-Walker predicticn filter
compute Yule-Walker LP spectrum
same as abs(fregz(v,w))
periodogram spectrum in 4B

Y is the autocorrelation typs

SVD enhancemsnt iterations

set rank to r

toeplitzize Ye

extract enhanced time signal

Burg prediction filter of order r

compute enhanced Burg LP spectrum

., £,HI, '-.");

The AOSP functions Ipf, burg, yw implement the standard Burg and Yule-
Walker methods.



Example

The SVD enhancement process can be used to smooth data and extract local
or global trends from noisy times series. Typically, the first few principal
components represent the trend.

As an example, we consider the global annual average temperature ob-
tained from the web site:

WWw.Ccru.uea.ac.uk/cru/data/temperature/

The data represent the temperature anomalies in degrees “C' with respect
to the 1961-1990 average. Using M = 30 and one SVD enhancement
iteration, /' = 1, we find the first five variances, given as percentages of the
total variance:

(A1, Aou A3, A As} = {63.78, 12.44, 2.27, 1.79, 1.71}

The first two PCs account for 76% of the total variance. The percent vari-
ances are plotted below.
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The smoothed signals extracted from reducing the rank tor = 1,2,3,4,5,6
are shown below. We note that the » = 2 case represents the trend well. As
the rank is increased, the smoothed signal tries to capture more and more of
the finer variations of the original signal.
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The MATLAB code used to generate these graphs was as follows:

A-_
v = A(:,14);
n = =a(:,1);

M = 30; E=1;
Yy zmean (y) ;

r

= loadfile('TaveGLZ2.dat’) ;

:1;

Ye = datamat(y,M,2);

for 1=1:K,

Ye = sigsub(Ye,r);
Ye = toepl(Ye,2);

end

ve = datasig(Ye,2);

plot(n,v,':",

n,ve,’ -");

g g

de g a9 dP df df

read data file
column-14 are the annual averages
column-1 holds the vyear

also, r=2,3,4,5,6

Zero mean

F/B Toeplitz-Hankel type
SVD enhancement iteration

extract rank-r signal subspace
convert to Toeplitz-Hankel

extract smoothed signal

plot original and smoothed signal



degrees °C

For comparison, we show below the Whittaker-Henderson smoothing method,
which appears to have comparable performance with the SVD method. The
degree of smoothing is controlled by the regularization parameter \. The

MATLAB code for that was,

lambda = 10000;
vwh = whsm(y, lambda, 3) ;
plotin,v,'r:’', n,ywh, 'b-");

Whittaker-Henderson, A = 10000
05 T T T T T T T T

ﬁ 1 1 1 1 1 1 1 1
1860 1880 1900 1920 1940 1960 1980 2000
year

%

degrees °C

WH smoothing, discussed later

WhittakerHenderson, 4 = 1000
DG T T T T T T T T

ﬁ 1 1 1 1 1 1 1 1
1860 1880 1900 1920 1940 1960 1980 2000
year



Structured Matrix Approximations

We saw in the previous section that the process of rank reduction destroys
the Toeplitz or Toeplitz/Hankel nature of the data matrix. The purpose of
the MATLAB function toepl was to restore the structure of the data matrix
by finding the closest matrix of the desired structure.

Given a data matrix Y that ideally should be Toeplitz, such as the au-
tocorrelation or covariance types, one can find a Toeplitz matrix 7" that is
closest to Y with respect to a matrix norm. The easiest norm to use is the
Frobenius norm. Thus, we have the approximation problem:

J =Y = T||% = min. where T is required to be Toeplitz

The solution is the Toeplitz matrix obtained by replacing each diagonal of
Y by the average along that diagonal. We demonstrate this with a small
example. Let Y and 7" be defined as:

Y11 Y12 Y13 to t1 fto
Y = |y w2 wo3| , 1T = |t 19 t4
Y31 Y32 Ysg ty t3 19



The difference matrix i1s:

Y11 —ta Y12 —1t1 i3 —1p
Y —T = |y —1t3 ya2—12 wya3 —11
Y31 — bty ysa — 13 Y3z — 1o

Because the Frobenius norm is the sum of the squares of all the matrix
elements, we have:

J =Y = T||F =lu11 — ta|* + yaz — to]? + |yss — to|?
+ |y12 — I‘-1|2‘ + |23 — i!‘-1|.2 + |y13 — I‘-0|2

+ |yor — t3|* + |ysg — ta]® + |y1s — tal?

The minimization conditions, d.J/0t; = 0,7 = 0.1,2, 3.4, lead to the de-
sired solutions:

Y12 + Ya3
‘)

i

to=13. 1=

Y11 T Y22 T Y33 f Y2 + Y32
= 3=

t .
2 3 2

ty = Y31



For a Hankel matrix approximation, we have the minimization problem:

J =Y — H||z = min. where H is required to be Hankel

Its solution 1s obtained by replacing each antidiagonal of Y by the aver-
age along that antidiagonal. This problem can be reduced to an equivalent
Toeplitz type by noting that the row-reversing operation Y — Y'.J, where
J 1s the usual reversing matrix, leaves the Frobenius norm unchanged and
it maps a Hankel matrix into a Toeplitz one. Setting 7" = H.J, the problem
becomes:

J=|Y—=H|%=|YJ=T|% = min, where T is required to be Toeplitz

Once 7' 1s found by averaging the diagonals of Y'.J, the Hankel matrix H
is constructed by row-reversal, H = T'.J. This amounts to averaging the
antidiagonals of the original data matrix Y .



Finally, in the case of Toeplitz over Hankel structure, we have a data matrix
whose upper half is to be Toeplitz and its lower half is the row-reversed and
conjugated upper part. Partitioning Y into these two parts, we set:

-_ Y1 A _—
Y = M ., M = H = required approximation

The matrix approximation problem is then:

, 2
_ 7] 2 ’-}T-I . |- T -‘ . 7 2 N 2 :
1= =l = |5 - ]| = We-Ti s -1 = min
where we used the property
Y = T*J|[F = Y] = Tl5

The solution of this minimization problem is obtained by choosing 7" to be
the average of the Toeplitz approximations of Y7 and Y./, that is, in the
notation of the function toepl:

T toepl(Y7 ) + toepl(Yy;J)
B 2




Example

As an example, we give below the optimum Toeplitz, Hankel, and Toeplitz
over Hankel approximations of the same data matrix Y:
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-0 15 107
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35 30 25
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M= 25 30 35
30 35 40
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The AOSP function toepl has usage:

Z = toepl (Y, type);

00 e 0P de

tyvpe=1:

Y = data matrix

type=0: Toeplitz,
Hankel,
type=2: Toeplitz/Hankel,

| T
T

10

15
20
30
40
H0

15
20
30
40
50

55

207
30
40
50
55

GO

% structured approximation of a data matrix

each diagonal of Y is replaced by its average
each anti-diagonal of Y is replaced by its average
Y must have even number of rows



Regularization of Ill-Conditioned Problems

We saw earlier that the presence of small, but nonzero, singular values can
cause the least-squares solution, x = A™b. to be highly inaccurate.

Thresholding of the singular values is one of many possible ways to
regularize the problem and produce an accurate solution. In all such meth-
ods, the true pseudo inverse of, A = UX VT is replaced by a “filtered” or
“regularized” version:

1
At =VIXHUT = Z —v;ul (true)
i1 i )
A = f(A)AT = VD) DUt = Z A viu  (regularized)
a;

i=1
The regularized least-squares solution becomes,

Xf = A:f'_b



The function f(o) is chosen so that it is nearly unity for large o, and f(o) /o
1s nearly zero for small o (as in highpass filters). Some examples are:

flo) =u(ec —0)  (thresholding)

(Tikhonov)

[ —
/(o) o 4+ )\
where u(x) is the unit-step and & > 0.\ > 0 are positive selectable pa-
rameters. The unit-step keeps only those singular values that are above the
threshold, o; > . The Tikhonov regularization is explicitly:

r
ad;

Xy :A}I_b = vaiugb

i=1 !



Tikhonov regularization can also be obtained from the following modified
least-squares criterion, also known as ridge regression,

J = ||b — Ax||* + \||x|* = min

Indeed, setting the gradient of .J to zero, we find:

Pl 2AT(Ax =b)+2)x =0 = (ATA+X)x=A"b

where [ 1s the identity matrix. Assuming that A is ill-conditioned but has
full rank, then, AT = (AT A)=' AT, (for the case N > M), so that:

x = (ATA+ A)TTATD = [(ATA)(ATA + AD)TH(AT A1 ATh, or,
x = f(A)A"b

Regularization 1s used in many practical inverse problems, such as the de-
blurring of images or tomography. The second term in the performance
index .J guards both against ill-conditioning and against noise in the data.

If the parameter A is chosen to be too large, it 1s possible that noise is
removed too much at the expense of getting an accurate inverse.



In large-scale inverse problems (e.g., a 512x512 image 1s represented by
a vector x of dimension 5122 = 2.6x10°), performing the required SVD
1s not practical and the solution is obtained iteratively, for example, using
conjugate-gradients. Regularization can be incorporated into such iterative
methods.

Often, the second term in .J is replaced by the more general term,
|Dx||? = x" DT Dx. where D is an appropriate matrix. For example, in
an image restoration application, D could be chosen to be a differentiation
matrix so that the performance index would attempt to preserve the sharp-
ness of the image. The more general ridge regression performance index
and its solution are in this case,

J = |b — Ax||* + \||Dx||* = min

x = (ATA+ADTD) " ATp

For example, the Whittaker-Henderson case (see Project-11) corresponds to
A = T and D the s-differencing matrix.



Sparse Signal Processing

Replacing the Lp-norm in the regularization term by the L, norm leads to
the alternative minimization criterion, referred to as L,-regularized least-
squares,

J = b — Ax||3 + A||Dx|[Z = min

where the first term is still the Lo norm of the modeling error, b — Ax, and
||x||,, denotes the L, norm of the vector

I
Hi))
X —
RSV
- M
P I\
Ixll, = ernip = Il =3 el

n=1
Such criteria have been studled very extensively in inverse problems, with

renewed interest in the past 15 years in sparse modeling, statistical learning,
and compressive sensing applications.

There 1s a vast literature on the properties, applications, and numeri-
cal methods of the above criteria. See AOSP Ch.15 for references, review

articles, and MATLAB-based packages.



Even though ||x||,, is a proper norm only for p > 1, the cases 0 < p <1
have also been considered widely because they promote the sparsity of the
resulting solution vector x, or rather, the sparsity of the vector Dx in .J.

In particular, the case p = 1 is unique for the following reasons: (a) it
corresponds to the smallest possible proper norm, (b) it typically results in
a sparse solution, which under many circumstances is close to, or coincides
with, the sparsest solution, and (c) the minimization problem for .J is a con-
vex optimization problem for which there are efficient numerical methods.

We concentrate below on the three cases p = 0,1, 2, and alsoset D = [
for now, and consider the following three optimization criteria for solving
the linear system, Ax = b, with A € RV*M b € RV and, x € R¥,

(Lo) : J = b — Ax||2 + \||x||o = min
(Ly): J=]b— Ax|%2 + \|x|[; = min
(La): J=|b— Ax||2 + \|x||3 = min

where the Ly norm, ||x||g. is the cardinality of the vector x, that is, the
number of its non-zero entries.



The criteria try to minimize the corresponding norm of x, while being con-
sistent with the given linear system.

Criterion ( Lg) results in the sparsest solution but is essentially intractable.
Criterion (Ly) is used as an alternative to (Lg) and results also in a sparse
solution. It 1s known as the lasso (least absolute shrinkage and selection
operator), or as basis pursuit denoising, or simply, as Lq-regularized least
squares.

Below we discuss two examples that illustrate the sparsity of the re-
sulting solutions:

(1) an overdetermined sparse spike deconvolution problem, and
(11) an underdetermined sparse signal recovery example.

In these examples. the (Lg) problem is solved with an iteratively re-weighted
least-squares (IRLS) method, and the (L;) problem, with the CVX pack-
age, available from, http: //cvxr.com/cvx/, and solved also with the
[RLS method for comparison.

(Lo) : J =|b — Ax||2 + A\ ||x]|o = min
(Ly): J=]|b— Ax||3 + \||x||; = min
(Ly): J=]|b— Ax||5 + \||x]|3 = min




IRLS Method

There are several variants of the IRLS method, but the basic idea is to re-
place the L, norm with a weighted o norm, which can be solved iteratively.
Given a real number p in the range, 0 < p < 2, we set, ¢ = 2 — p, and write
for any real number x # 0,

e R 1 O il

TP T e T el 4e

where £ is a sufficiently small positive number needed to also allow the case
x = 0. Similarly, we can write for the L,-norm of a vector x € RY,

. |r5
x|l = Z e~ Z L

H'{ ) = dli‘l |:} — dlag { ‘ s
| N ET e P

Alternatively, one can define W (x) as the pseudo-inverse of the diagonal
matrix of the powers |r;|9, i = 1,2, ..., M,



that 1s, in MATLAB language,

”'(XJ = pil‘l\’ (diﬂg[‘i‘l‘q . I;F2|q e e |;1‘j.,{‘q})

Then, the L,-regularized least-squares problem can be written in the form,

J = ||b — Ax|3 + Allx|z = [[b — Ax||3 + AxTW(x)x = min

This approximation leads to the following iterative solution in which the
diagonal weighting matrix W’ to be used in the next iteration 1s replaced by

its value from the previous iteration,

for k=1.2,.... K. do:
I_J[__rk_ | = W (X (k—1) )

x'*) = arg min Hb — Ax Hz +AXTW,_ (X
X

(IRLS)

initialized to the ordinary least-squares solution of criterion (Lo):

xO = (AT +ATA) " ATy

The solution of the optimization problem at the £th step is:

x ) = (/\ Wi—1+ ATA) ' ATh



Thus. the choices p = 0 and p = 1 should resemble the solutions of the Lg
and L1 regularized problems. The IRLS algorithm works well for moderate-
sized problems (N, M < 1000). For large-scale problems (N, M > 10°),
the successive least-squares problems could be solved with more efficient
methods, such as conjugate gradients.

The more general case that includes the smoothness-constraining ma-
trix [ can also be handled in the same way. Now, we can write,

J = b — Ax||; + A|[Dx|]” = [[b — Ax|[; + Ax"DTW(Dx) Dx = min

which leads to to the following iterative algorithm,

fork=1.2 ..., K. do:

Wy 1= I—-I--"(Dx(k_”) (IRLS)
x(®) = arg 1min Hb — rb(Hz + A x"DTW,_{Dx

with the algorithm initialized to the ordinary least-squares solution:
—1
x = (ATA+2D"D)" ATb
The solution of the optimization problem at the kth step is:

x®) — (ATA 4+ AD™W;,_, D) AT



Sparse Spike Deconvolution Example

Consider a deconvolution problem in which the observed signal v,, is the
noisy convolution, v,, = h,, * s,, + v,,, Where v,, is zero-mean white noise of
variance 2. The objective is to recover the signal s,, assuming knowledge
of the filter A,,. For an FIR filter of order M and input of length L, the output
will have length, N = L + M. and we may cast the above convolutional
filtering equation in the matrix form:

y=Hs+v

where y,v € RY. s € R%, and H is the N x L convolution matrix corre-
sponding to the filter. It can be constructed as a sparse matrix by the AOSP
function, convmat,

H = convmat (h,L); % H = convmtx(h,N) = non-sparse version
The filter 1s taken to be:
h,, = cos ((].15(\?? - -?1.[})) <:~.}{p(—[].[}(]4{'-n — ?1.0)2) . o n=20.1,..., M

where M = 53 and ng = 25.



The input is a sparse spike train consisting of S delta-function spikes:

S
S, = Z a;0(n—mn;), n=01,..., L—1
i=1

where S = 8 and the spike locations and amplitudes are given as follows:

n; = [20, 40, 60, 70, 80, 100, 120, 140]
a; = [10, 8, 4, —4, 5, 6, —2, 4]
The input signal length is defined from the last spike location to be L =

ng+ 1 = 141. The noise standard deviation is chosen to be o, = 0.1, which
corresponds to approximately 38 dB signal-to-noise ratio, that is,

SNR = 20 log,,(max |Hs|/o,) = 38

The input signal s,, and the convolved noisy signal y,, are shown below.
Also shown are the impulse response /,, and the corresponding magnitude
response |H (w)| plotted in dB versus 0 < w < 7 rads/sample.
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We note that H(w) occupies a low frequency band, thus, we expect the
effective deconvolution inverse filtering operation by 1/H(w) to be very
sensitive to even small amounts of noise in y,, even though the noise is
barely visible in v, itself. The three criteria to be implemented are,

J = |y — Hx||? + \||x||op = min
= ||y — Hx||3 + \||x||; = min

= ||y — Hx||3 + \|[x||3 = min

The Lo case with A = 0 corresponds to the ordinary (full-rank overdeter-
mined) least-squares solution of the linear system,y = H x, that is,

Xo = (H'H)'H'y

or, in MATLARB,
Xord = H\)

Similarly, the Ls-regularized solution with non-zero A is,

Xo = (M + H'H) " 0y



These two solutions are depicted below, displaying also the percent error of
recovering the desired signal s, defined in terms of the Ly norms by.

Ix —s||
PE]TOI' — 1()[}'—
Isll2
ordinary least—squares solution, x(n), A=0 Lz - regularized solution, x(n), A =0.01
101 percent error = 139.28 - 10+ percent error = 77.65 A
8 al
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....... S(n)
-4 —4 — x(n)
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

n n

As expected from the lowpass nature of H(w), the ordinary least-squares
solution 1s too noisy to be useful, while the regularized one is only slightly
better. The effect of increasing A is to smooth the noise further, but at the
expense of flattening and broadening the true spikes (for example. try the
value, A = 0.1).



To understand this behavior from the frequency point of view. let us pretend
that the signals y,,, ,, are infinitely long. Then, we may replace the (Lo) by
the following,

J = Z }yn—hﬂﬁaxng—l—)\ Z ;1??12
Jr:/’IT Y(w) — Hw)X(w 2 dw / |X Edw —min

where we used Parseval’s identity. The vanishing of the functional derivative
of ./ with respect to X *(w), then leads to the following regularized inverse
filtering solution,

a.J 2 i i i
) H(w)|[ X(w) — H (w)Y(w) + AX(w) =0, o
X(w) H(w) Y(w)| (regularized inverse filter)
A+ |H(w)|




If we express Y (w) in terms of the spectrum S(w) of the desired signal
and the spectrum V' (w) of the added noise, then, the above solution can be
written as,

Y(w)=H(w)S(w) + V(w)
[H(w)| H* (w)

X (w) = S(w) + Viw
() A [H(w)| («) A+ | H(w)| ()

For A = 0, this becomes the ordinary inverse filter,

N
ZP R 7 %

X(w) = Viw)

which, although it recovers the S(w) term, it greatly amplifies the portions
of the white-noise spectrum that lie in the stopband of the filter, that is
where, H(w) ~ 0.

For A # 0 on the other hand, the regularization filter acts as a lowpass
filter, becoming vanishingly small over the stopband, and hence removing
some of the noise, but also smoothing and broadening the spikes for the
same reason, that is, removing some of the high-frequencies in S(w).



By contrast, the Ly and Ly regularized criteria behave dramatically differ-
ently and are capable of accurately extracting the input spikes, as seen in the
graphs below.
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The L1 case was computed with the CVX package, as well as with the IRLS
algorithm, with the parameter values, A = 0.1,p = 1.¢ =1, = = 107°, and
K = 100 iterations.

The Lo case was computed with the IRLS algorithm using parameters,
A=01p=0¢g =2 c=10"" and K = 100 iterations—however,
it actually converges within about 10 iterations as seen in the bottom-right
graph that plots the iteration percentage error defined at the £th iteration by,

”X(kj — X(k_l)

=1l

P(k) = 100- E

The recovered signal in the Ly case is slightly sparser than that of the 4
case, as 1s seen in the figures, or by evaluating the reconstruction error,

}%HW'ZZIUO- M_____ﬂg
s ]l2

but both versions fairly accurately extract the spike amplitudes and loca-
tions. More information about the MATLAB implementation details may
be found in Project-12. As an example, the CVX solution is obtained by the
following MATLAB commands (aftert the package is installed):

cvx_begin % L1 case - CVX solution
variable x (L)
minimize( sum square (H*x-v) + la * normix,1l) )
cvix_end



Sparse Signal Recovery Example

In this example, we consider the under-determined noisy linear system:
y=As+v

where A € RIWOx2000 g c RV and y, v € R, The matrix A has
full rank and consists of zero-mean, unit-variance, gaussian, independent
random entries, and the 2000-long input signal s 1s sparse with only L =
100 non-zero entries taken to be randomly positioned within its length, and
constructed to have amplitudes £1 with random signs and then weighted by
a triangular window in order to get a variety of values.

The noise v is zero-mean gaussian white noise with standard deviation
o, = 0.1. The recovery criteria are as before,

= ||y — Ax||2 + \||x]|[o = min

= |ly — Ax||3 + A\ |[x||{ = min

= [ly — Ax||3 + \||x]|3 = min

L]



The figure below shows the signal s(7n) and the observations y(n) as well as
the recovered signals x(n) based on the above criteria.

The L; solution was computed with the CVX package and the IRLS
algorithm, and the Ly solution, with the IRLS algorithm.

The parameter A was chosen to be A = 0.1 in the L; and L cases,
and A = 0 for the Ly case, which corresponds to the usual minimum-norm
solution of the underdetermined linear system, Ax =y, that is, in terms of
the pseudo-inverse of A,

x = ATy = A" (AA") Ny

Note that using A = 0.1 in the Lo case is virtually indistinguishable from
the A = 0 case.

The Ls criterion does not produce an acceptable solution. But both the
Ly and the L criteria accurately recover the sparse signal s(n), with the L
solution being somewhat sparser and resulting in smaller recovery error,

Prasror = 100 - lIx =sll2



sparse input, sin)

1 | T T T ]
0.5 .
D | | || | ”| ||II|I.
-0.5¢ | | -
-1F .
0 500 1000 1500 2000
n
ohservations, y(n)
20 T T T

_20 1 1 1
0 500 1000 1500 2000
n



0.5f

0.5f

LE’ minimum-norm solution, x(n)

error = T1.21 % |

500

1000
n

1500

Ll, IRLS solution, x(n)

2000

error = 2.54 %

500

1000
n

1500

2000

Ll’ CVX solution, x(n)

1r error — 2.54 &
|
| - ||H|| . i
~0.5} ‘H
_1_ 1 1 1
0 500 1000 1500
In
LD’ IRLS solution, x(n)
1r error = 0.63 %
l |
| ||\|| ¥
_05}F | H -
_1_ 1 1 1
0 500 1000 1500
n

2000

2000



The IRLS algorithms were run with parameters A = 0.1, = = 107°, and
K = 20 iterations. The successive iteration percentage errors,

||X(r’ﬂ)

[1x*=H12

P(k) =100 -

were plotted versus £ in the figure below for the Ly and L cases.
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Trend Extraction

Whittaker-Henderson Smoothing

The Whittaker-Henderson smoothing method based on Lo regularization is
one of the most effective methods of trend extraction, trying to balance fi-
delity to the observations. yet resulting in a smooth trend having a prescribed
degree of smoothness.

[t has been termed the “perfect smoother” and finds applications in a
diverse range of fields, such as actuarial sciences, physical sciences, engi-
neering, business, and finance. It was originally derived by Whittaker and
Henderson in the context of actuarial sciences. In the context of charac-
terizing business cycles. it 1s known as the Hodrick-Prescott filter. More
recently, its sparse versions based on the L1 and Ly regularization criteria
have received a lot of attention.

Whittaker-Henderson smoothing is a discrete-time version of spline
smoothing using equally-spaced data. AOSP Ch.8 includes references to
some of the original papers by Bohlmann, Whittaker, Henderson and others,
and their applications to trend extraction in the actuarial sciences, physical
sciences, and business and finance, including Hodrick-Prescott filters. and
recent sparse versions in terms of the L; norm, as well as extensions to
seasonal data.

AOSP
Ch.8




For a length- NV signal of observations, v,,, 0 < n < N — 1, the optimization
criterion for determining a length- N smoothed signal z,, is:

N—-1
J = E Wy
n=>0

In the original references, Bohlmann considered the case s = 1, Whittaker
and Henderson, s = 3, and Hodrick-Prescott, s = 2. The operation V?*z,,
represents the backward-difference operator

2 .
= min

N-1
Un — ;1?n|2 + A Z }VS;}:H
n=s

{VI)H — Ty — Tp—1
applied s times. For example for s = 2, we have,
Vi, = V(Vz,) =(Vz), — (Vz),—1
= (2, — Tp—1) — (Tp—1 — Tp—2) = T, — 201 + Tp—9
so that the performance index will be in this case,

N-1 N-1
J = E u-’n}yn — I'np
n=0

2 ; 2 .
+ A E |;1.*.n — 27,1+ T,_9 = min
n=2




The corresponding s-difference filter and its impulse response are

DS(:) — (]_ — ;_-_-_1)3

1 ! 3
d; = [J Codp= | 2| ds= |
1 1

second term, to minimize the spectral energy of x,, at the high frequency
end, while attempting to interpolate the noisy observations with the first
term. The result is a lowpass smoothing operation. In fact, the filter D,(z2)
may be replaced by any other (causal) FIR highpass filter [)(z), or d,, in the
time domain, with a similar result. Thus, a more general version would be:

Because D,(z) is a highpass filter, the performance index attempts, in its

N-—1 N-1
2 j : 2 .
n=>0 n==s

where d,, *x,, denotes convolution and s is the filter order, that is, we assume
that the impulse response is d,, = [do. ds. . ... ds].



The above criteria are examples of the method of regularization, which we
discussed earlier in the context of ill-conditioned linear systems.

The summation limits of the second terms in .J restrict the convolu-
tional operations to their steady-state range. For example, for a length- N
causal input {xq, x1,...,xy_1}. the s-difference filter has the full convolu-
tional output:

min(s,n)

In = Vi, = Z d‘s('l;)mn—k- 0<n<N-—-1+s
k=max(0,n—N+1)

and the steady-state output (assuming N > s):
S
g, = Vi, = st(l;);rn_;g. s<n<N -1
k=0

Similarly, we have in the more general case,

min(s,n)

O = dy, % T, = Z Ao, 0<n<N-—1+s
k=max(0,n—N+1)

5
gn:dn*In:deIn—k‘ SE'H-EJM—I
k=0



The filtering operation ¢, = Vr,, 0 < n < N-—1+s, can be expressed
vectorially as, g = D.X., where x 1s the N-dimensional input vector x =
(20, 71, ....on_1]".and g = [g0. g1, . ... gN—144]" . the (N +5)-dimensional
output vector.

Similarly, the operation g,, = d,, * x,, can be expressed as g = Dy X,
where the (N+s)x N full convolution matrix can be constructed using the
AOSP function convmat, which is a sparse-matrix version of the built-in
function convmtx,

Dfull = convmat (d,N) ; % sparse full convolution matrix

where d = [dy, dy, . .. ,ds}T. The steady-state versions of the full convolu-
tion matrices are obtained by extracting their middle N —s rows, and there-
fore, they have dimension (N—s)xN. For example, we have for N = 5
and s = 2, withd = [dn dy, (TI-Q}T,

dyg 0 0 0 0]

di dg 0 0 0 4, 0 017

dy dy do 0 0 [d.g dy dy 0 ﬂ dy dy 0
D= 10 dydydo 0] = D=10 dy dy dy 0! = |dy dy ds

0 0 dy dy dy [0 0 do d d.;.J 0 dy dy

0 0 0 dy dy 0 0 do

00 0 0 d - -




The last expression shows that the steady matrix can also be viewed as
the transposed of the convolution matrix of the reversed filter with N —s
columns. Thus, in MATLAB two possible ways of constructing ) are:

Dfull = convmat(d,N); D = Dfull(s+1:N, :): % steady-state D
D = convmat (flip(d), N-s)’; % steady-state D

For the special case of the s-difference filter, we can use the equivalent
constructions:

Dfull = convmat{(d,N); D = Dfull(s+1:N, :);
D = convmat (flip(d), N-g)’;

D = diff(eye(N),s);

D = diff (speye(N),s);

steady-state D
steady-state D
steady-state D
sparse verslion

gf df df gp

As an example, we have for N = 7,5 =2, andd = [1, -2, 1]:
(1 -2 1 0 0 0 0]
o 1 -2 1 0 00
p=(0 0 1 =2 1 00
o o o0 1 -2 1 0
o o0 0 0 1 =21




The corresponding steady-state output vector g = [gs, gsi1, - - - . gN_l]T 1S
given by, g = Dx, with squared norm,

N-1 N-1
Z |d,, % 1, )% = Z g>=glg =x1(D"D)x
n—s n=s

Therefore, the performance index can be written compactly as:

J=(y —x)"W(y —x)+ X/ (D"D)x = min

where 117 1s the diagonal matrix of the weights, 1" = diag([-u;g. Wi, . ... -u:N_ﬂ).
The optimum solution is obtained by setting the gradient to zero,
0.

o = 2y —x) + IND™D)x =0 = (W+AD"D)x =Wy
»

resulting 1n,

X = (W +ADTD)'Wy

The AOSP function whsm implements the solution,

x = whem(y, lambda,s,w);} % Whittaker-Henderson smoothing



Sparse Whittaker-Henderson Methods

Several variations of the Whittaker-Henderson method have been proposed
in the literature that use different norms for the two terms of the performance
index .J, such as the following criterion based on the L, and the L, norms,
and using unity weights w,, for simplicity,

N-1 N-1
J

w = E |y.n — oz, |T+ N E }VSIHF — min

?1:{] ==

Such criteria are capable of handling outliers in the data more effectively.
The index .J,, can be written vectorially with the help of the s-differencing
matrix [ defined above,

Jop = H}" - XH; + )‘HD"”i = min

where ||x ||, denotes the L, norm of the vector x = [zq, 71, -+, zx_1]"

P

N-1
x|l = Z o = ‘KHP Z |5 [P

n=>0



For p = oo, we have instead,

X|loo = max |z
IXlloo =, max_ [
For p = 0, we define ||x||p as the cardinality of the vector x, that is, the
number of nonzero elements of x.

We note that ||x||, is a proper norm only for, p > 1, however, the cases,
0 < p < 1. have also been considered.

AOSP Ch.8 includes references to the earlier studies of the case .J;;
formulated as a linear programming problem, the case .J,,. including the
L norm case, p = oo, and the more general case, .J,,. More recently, the
case .Joq, called Ly trend filtering has received a lot of attention

Generally, the cases Jo, are examples of so-called L,-regularized least-
squares problems, which have been studied very extensively in inverse prob-
lems, with renewed interest in sparse modeling, statistical learning, com-
pressive sensing applications.



Next, we concentrate on the .Jy9, .Jo1, and .Joq criteria,

2 2

Jog = y—x2+A ngzmin
Jo1 = )-'—XEJF/\ Dxlzmin
Jog = y—xj—k)\ Dxuzmin

The .Jo1 and .Jog criteria tend to promote the sparsity of the regularizing term
Dx, that 1s, Dx will be a sparse vector consisting mostly of zeros with a
few nonzero entries.

Since DX represents the s-differenced signal, V®x,,, its piecewise van-
ishing implies that the trend x,, will be a piecewise polynomial of order
s — 1, with the polynomial pieces joining continuously at few break (or,
kink) points where V*z,, is nonzero.



For differencing order s = 2, used in Hodrick-Prescott and Lq-trend-filtering
cases, the trend signal x,, will be a piecewise linear function of n, with a
sparse number of slope changes.

The case s = 3, used originally by Whittaker and Henderson, would
correspond to piecewise parabolic segments in 7.

The case s = 1, corresponding to the original Bohlmann choice, re-
sults in a piecewise constant trend signal z,,. This case 1s known also as
total variation minimization method and has been applied widely in image
processing.

The .Jo; problem can be implemented easily in MATLAB with the
CVX package.

The .Jop problem. which produces the sparsest solution, can be solved
by the IRLS method that we discussed earlier, which can also be used to
solve the J5; and the .J5, problems.



As applied to the present case, the IRLS method 1s formulated as follows.
Given any real number, 0 < p < 2, let ¢ = 2 — p, and note again that for
any real number = # 0, we can write,

2 2

EONETEE

z|P =

where < is a sufficiently small positive number needed to also allow the case
x = 0. Similarly, we can write for the L,-norm of a vector x € RN

|

||x||P _ Z EALES Z |£ T XTT"T-’(x)x

1 1 1 1
W(x)=diag | —— | = diag . e
1+¢ zol? + & || +€ [ TN_q]? 42




Then, the L,-regularized problem .J2, can be written in the form,
Jop = ||3-' — XHE + )\HDXH? = ||} — tz + AxI DY W(Dx)Dx = min

which leads to to the following iterative algorithm,

fork=1,2..... K, do:

W,_, = I.-{_.--"(DX(J’C—U) (IRLS)
x (k) = arg min Hw — XHE + A\xI'DTW,_Dx

with the algorithm initialized to the ordinary least-squares solution of crite-

rion .Joo.
22 (0) T\ L.,
X" = (I +AD D) y

The solution of the optimization problem is at the £th step,

x (k) — (f + ADTT'T-’T;g_lD)_l.Y

Thus. the choices p = 0 and p = 1 should resemble the solutions of the L
and L, regularized problems.



Example

Global Warming Trends. The figure below compares the Whittaker-Henderson
trends for the Lo, L1, and Ly cases, with s = 2, as well as the corresponding
regularizing differenced signals, V*z,,.

The L case was computed with the CVX package. The corresponding
IRLS implementation is not shown since it produces virtually indistinguish-
able graphs from CVX.

s = 2; Ds = diff(speye(N),s); % (N-s)xN differencing matrix
la = 10; % Whittaker-Henderson with L1 norm
cvx_quiet (true) ; % CVX package, http:/cvxr.com/cvx/

cvx_begin

variable x(N)

minimize( sum_square(y-x) + la * norm(Ds+*x,1) )
cvx_end

The Ly case was implemented with the IRLS method and produced slightly
sparser differenced signals as can be observed in the graphs.

Also shown below are the cases with s = 3, resulting in piece-wise
parabolic segments.

Additional simulation examples, including comparisons with the SMA
and DEMA smoothing filters, are included in Project-11.
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