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DTFT 12SP — Ch.9
frequency resolution and windowing 0&S - Ch.10

The discrete Fourier transform (DFT) and its fast implementation, the
fast Fourier transform (FFT), have three major uses in DSP:

(a) the numerical computation of the frequency spectrum of a signal
(b) the efficient implementation of comnvolution by the FET

(¢) the coding of waveforms, such as speech or pictures, for efficient trans-
mission and storage



Even though i"{f} is the closest approximation to X ( f) that we can
achieve by DSP, it is still not computable because generally it requires an
infinite number of samples z(n7"), —oo < n < co. To make it computable,
we must make a second approximation to X ( f), keeping only a finite num-
ber of samples, say, x(nT"), 0 < n < L — 1. This time-windowing process
i1s illustrated below.
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In terms of the time samples z(n71"). the original sampled spectrum )?( )

.

and its time-windowed version X, ( f) are given by:

o0

j;:(f) = Z i—’(_'?l-T)E_Q?ijnT

n—=—oo

L-1

Xp(f) =) a(nT)e It

n=>0

(DTFT)



We may take the duration of the data record to be, in seconds and in samples:

1, =LT = L:%:fSTL

The windowed signal may be thought of as an infinite signal which 1s
zero outside the range of the window and agrees with the original one within
the window. Defining the rectangular window of length L:

1, it 0<n<L-1
w(n) = _
‘ 0, otherwise
then, the windowed signal can be expressed as follows:
x(n), if 0<n<L-1
rr(n) = xz(n)w(n) = { “{ ) L

In terms of digital frequency, w = 27 f/ fs, we may denote the DTFTs,

otherwise

X(w) = Z ;F('?I)ﬁT_jW?l
27 n=—o00
“ ;f L-1 . (DTET)
s }{L(L&J) — Z I('?I.)E,’_jwn _ Z ;I’L(\'T?)E_jun
n=>0 n—— o
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As the length L of the data window increases, the windowed signal x (7)
becomes a better approximation of x(n). and thus. X (w). a better approx-
imation of X (w). In general, the windowing process has two major effects:

[. It reduces the frequency resolution of the computed spectrum, in the
sense that the smallest resolvable frequency difference is limited by
the length of the data record, that is, Af = 1/77. This is the well-
known “uncertainty principle.”

2

. It introduces spurious high-frequency components into the spectrum,
which are caused by the sharp clipping of the signal x(n) at the left
and right ends of the rectangular window. This effect is referred to as
“frequency leakage.”



Both effects can be understood by deriving the precise connection of
the windowed spectrum X (w) to the unwindowed one X (w). Using the
property that the Fourier transform of the product of two time functions is
the convolution of their Fourier transforms, we obtain the frequency-domain
version of, xr,(n) = x(n)w(n),

4 ,odw!
JYL ) = / )I][ {L...f — L.u) ')‘,.T

T i

where W (w) 1s the DTFT of the rectangular window w(n ), that is,

[t can be thought of as the evaluation of the z-transform on the unit circle at
z = /¥, Setting w(n) = 1 in the sum, we find:

L-1 L-1 1 — —L
Wiz) = Zu;{\ﬂ): "= Z:_ﬂ' = 1 — i_l
=0 nn=>0 -

Setting > = €/, we find for W (w):

1 —e7b  sin(wL/2) (L))
1 —edv  sin(w/2)

W(w) =




_ o JLw
W (w) = 1 —e o sin(wlL/2) —je(L-1)/2
1 —ew sin(w/2)
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The mainlobe peak at DC dominates the spectrum, because w(n) is es-
sentially a DC signal, except when it cuts off at its endpoints. The higher
frequency components that have “leaked™ away from DC and lie under the
sidelobes represent the sharp transitions of w(#n) at the endpoints.

The width of the mainlobe can be defined in different ways. For example,
we may take it to be the width of the base, 47/ L, or, take it to be the 3-dB
width, that is, where |17 (w)|? drops by 1/2. For simplicity, we will define
it to be half the base width, that is, in units of radians per sample:

27
Aw, = (rectangular window width)

In units of Hz, it is defined through Aw,, = 27 Af,,/ fs. Thus,

fs 1 1
Afy === =
! L LT 1T




DTFT Computation

We discuss some computational aspects of the DTFT. Consider a length-L
signal z(n), n =0,1,..., L — 1, which may have been pre-windowed by a
length- L non-rectangular window. Its DTFT can be written in the simplified
notation:

)

1
X(w) = z(n)e 7™ (DTFT of length-L signal) (1)

e

|
o

[t may be computed at any desired value of w in the Nyquist interval
—7m < w < m. Itis customary in the context of developing computational
algorithms to take advantage of the periodicity of X (w) (with period 27)
and map the conventional symmetric Nyquist interval —7 < w < 7 onto
the right-sided one 0 < w < 27, referred to as the DFT Nyquist interval.

b X ®) A x (o)
: : : - : : . =
T -0, 0 o T 2n ® - 0 o ™ 5 t on ®
e ON
ordinary DFT
le—— Nyquist —» le—— Nyquist —

interval interval



The positive-frequency subinterval 0 < w < 7 remains unchanged, but
the negative-frequency one, —m < w < 0, gets mapped onto the second half
of the DFT Nyquist interval, 7 < w < 2.

For example, a cosinusoidal signal cos(win) with two spectral peaks at
+wq will be represented by the two shifted peaks:

{wy, —w1} & {wy, 27 — wq}

The DTFT can also be thought of as the evaluation of the z-transform of
the sequence () on the unit circle:

L-1 L1
A(w) = Z r(n)e™ " = r(n)z™" = X(2) | (2)
n= n=[0 z=elw z=plw

Thus, X (w) can be computed by evaluating the polynomial X (z) at z = 7%,
Horner’s rule of synthetic division is an efficient computational algorithm:

for each complex 2 do:
X =0
for n = L—1 down to n = 0 do:
X =zx(n)+271X

(Horner’s rule) (3)




Upon exit, X is the desired value of X (z). To see how the iterations
build up the z-transform, we iterate them for the case L = 4. Starting with
X =0atn=L—1=3, we have:

X =a34 271X = 23

X =x94 27X =29+ 27124

X =z + X = T+ -’;-'_I:L‘Q + .-:'_2:1:3 @
X=axg+ X =ag+ 27 ey + 2200 4+ 27323 = X(2)

The built-in MATLAB function polyval uses Horner’s algorithm for poly-
nomial evaluation. In turn, the latter 1s used in the function freqz to evaluate
the DTFT at any range of ws, for example, over the range, w, < w < wy.

Wp — Wa

where Awy;, 18 the bin width, that is, the spacing of the frequencies wy:

W = Wq + k = w, + kAwpy,, E=0,1,...N -1

Wp — Wq
N

The usage of freqz for DTFT computation is as follows:

Awpig =

T x = ... %2 define length-L input signal
T w = ... % vector of digital frequenciles [rads/sample]

X = fregz(x,1l,w); % vector of DTFT wvalues, same length as w



DFT

The N-point DFT of a length-L signal 1s defined to be the DTFT of the sig-
nal evaluated at NV equally-spaced frequencies over the right-sided Nyquist
interval, 0 < w < 27w, The DFT frequencies are defined in radians per
sample as follows:

2k
wp=——1|, k=0,1,...,] N —1 (5)
or, in Hz
kfe .. |
Jre = { , k=0.1,....N—1 (6)
Thus, the N-point DFT will be, for £ = 0.1, ..., N —1:
L—1

X(wk) = Z r(n)e ™| (N-point DFT of length-L signal)  (7)
n=>0




The N-dimensional complex DFT array X, = X(wy). k=0,1,..., N —1

can be computed in a variety of ways:

(a) using the freqz function

(b) by the FFT algorithm, provided N > L
(¢) in matrix form using the N x L DFT matrix, discussed below.

T x = ... % define length-L input signal

k = 0:N-1; % DFT index

om = Z2*pix*k/N; % DFT frequencies

X = fregz(x,1l,om); % N-point DFT

X = fft(x,N); % correct only if N>=L

X = A * X % A = NxL DFT matrix, x = Lxl column

simplified notation for N-point DFT:

L—1
X = E z(n)e~2mikn/N
n=>0




The value at &k = NN, corresponding to wy = 2, is not computed because
by periodicity it equals the value at wy = 0, that is, X (wy) = X(wp). The
bin-width, i.e., the spacing of the DFT frequencies is in rads/sample or Hz,

2m [
— or, Afpin = —
N Join =5

The standard DFT has its N frequencies distributed evenly over the full
Nyquist interval, [0, 27), as shown below, but one can also use equally-
spaced frequencies of any desired subinterval,

Awpip = (8)

X(w) X(w)
— b ﬂ‘mbin = (mb_ma]"w
X0l X, ¥ Xy Xy —>| |
2 . T

\ }=

Wy ® @y - T - N 21 T ©q 0 ©p T

Fig. 1 N-point DTFTs over [0, 27) and over subinterval [wa, ws ), for N = 10,



The N computed values X (wy,) can also be thought of as the evaluation
of the z-transform X (z) at the following z-points on the unit circle:

L—1
X(wp) = X(z) =Y a(n)z" 9)
n=>0

2 = 9k = 2TIR/N E=0.1..... N -1 (10)

These are recognized as the Nth roots of unitv, that is, the N solutions of the
equation =" = 1. They are evenly spaced around the unit circle at relative
angle increments of 27 /N, as shown in Fig. 2.

-
S

Fig. 2 Nth roots of unity, for N = 8.



Note also that the periodicity of X (w) with period 27 is reflected in the
periodicity of the DFT Xj, = X(wy) in the index £ with period N. This
follows from:

2r(k+N)  2nk

Wk+N = \ =N + 2 = w + 27

which implies:

}irk_|_hr = JX(_LLJ;;_FN) =X (U.;'k + :)?T) — KF(LLJ,I_;) = ){k

Also, if the time signal x(n) 1s real-valued, the Hermitian property of the
DTFT can be combined with its 27 periodicity to give,

XN(w) = X(—w) = X271 — w)

and for the DFT,
X (wg) = X(2m — wy)

or. in terms of the DFT index.

Xy =Xn_| k=0,1,...,N—1

noting also that Xj = X'y = Xy, 1.e., Xp 1s real-valued.



Having computed an Npoint FFT, Xz, &£ = 0.1, ..., N — 1, it should be
remembered that only the first N/2 outputs correspond to non-negative fre-
quencies, that is,

X = X(wy) E=0.1,.... 5~ 1
2k )
Y

whereas the remaining N/2 — 1 outputs get mapped to negative frequencies
by the periodicity and conjugation conditions,

N, = J{ik = rRr_k = X7 (wh-'_k) = }ir*(—w;g). ., k=
2m(N — k)

WN_ — N = ?-?'I' — W

The MATLAB function fftshift can be used to recenter the computed DFT/FFT
to the symmetric Nyquist interval, or the symmetric index interval,

) N_ _N
—ri_wk{ﬂ_. —2_ _2

—1
with usage,

X_shifted = fftshift(X);



N = 32; FFT shift example

n = 0:N-1;
k = 0:N-1;
A = (1-k/N) .* (k<=N/2) + (k/N) .* (k>N/2);

[nn,kk] = meshgrid(n, k)

ww = 2*pi*kk/N;
(1-kk/N) .* (kk<=N/2) + (kk/N) .* (kk>N/2);

>

X = real(sum(AA .* exp(j*ww.*nn))/N); construct input x(n)

X = real (f£t(x,N)); | right-sided FFT, X

Xs = fftshift(X);

symmetric FFT, X
ks = -N/2 : N/2-1; y K

figure; stem(ks,Xs,'r--', 'marker', 'none'); hold on
stem(k,X, 'b-', 'marker', 'none') ;

figure; stem(k,X, 'b--', 'marker', 'none'); hold on
stem(ks,Xs, 'r-', 'marker', 'none') ;
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Zero Padding

In principle, the two lengths L and N can be specified independently of each
other: L is the number of 7ime samples in the data record and can even be
infinite; NV is the number of frequencies at which we choose to evaluate the
DTFT.

Most discussions of the DFT assume that L = N. The reason for this
will be discussed later. If L < N, we can pad N — L zeros at the end of
the data record to make it of length N. If L > N, we may reduce the data
record to length N by wrapping it modulo-N—a process to be discussed
later.

Padding any number of zeros at the end of a signal has no effect on
its DTFT. For example, padding D zeros will result into a length-(L+D)
signal:

X = [I[}.Il. C ey IL—l]
Xp = [I[}.Il. R i 0.0,.... Q]

T
DD zeros

with the corresponding DTFTs remaining the same. because xp(n) = 0 for
L<n<L+D-1,



L+D-1 L+D-1

Xplw) = Z rp(n) pJen ZID n) edem | Z rp(n)e=ien
= ZI(-?z.)e_j“” = X(w)
n=0

Therefore, their evaluation at their N-point DFT frequencies will also
be the same: Xp(wy) = X(wi). We note also that padding the D zeros to
the front of the signal will be equivalent to a delay by D samples, which
in the z-domain corresponds to multiplication by =" and in the frequency
domain by e=7“P_ Therefore, the signals:

X = [I[}, i IL—l]
Xp — E] U Ce {1 g, Lq,. ... IL—l] (l l)
D zeros

will have DTFTs and DFTs:
Xp(w) =e7“PX(w)

| 12
Xp(wp) = e P X (wy), k=0,1,....N -1 -



Physical versus Computational Resolution

The bin width, A f, = fs/N, represents the spacing between the DFT fre-
quencies at which the DTFT i1s computed and must not be confused with
the frequency resolution width, Af = f,/L, which refers to the minimum
resolvable frequency separation between two sinusoidal components (as-
suming a rectangular window).

To avoid confusion, we will refer to, Af = f,/L, as the phvsical fre-
quency resolution and to, Afy, = f/N, as the computational frequency
resolution.

The interplay between physical and computational resolution is illus-
trated in Fig. 3 for the triple sinusoidal signal consisting of three equal-
strength sinusoids of frequencies f; = 2 kHz, fo = 2.5 kHz, and f3 = 3
kHz, where 7 is in milliseconds and sampled at a rate of 10 kHz,

x(t) = cos(2m fit) + cos(27 fot ) 4+ cos(27 f3t)

x(t,) = cos(2m fit,) + cos(2m fot,,) + cos(2m fat,,) . t, =nT

or, in equivalent notation, for a total of L samples,n =0,1, ..., L—1,

21 fy ) (Q?sz ) (QFsz )
r(n) = cos n | + cos n | -+ cos n
) ( fs [ [s

The N = 32 and N = 64 point DFTs of the rectangularly windowed
signals of lengths L. = 10 and L = 20 are shown together with their full
DTFTs (computed here as 256-point DFTs).
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Fig. 3 Physical versus computational resolution in DTFT computation.



[t 1s evident from these graphs that if the length L of the signal is not
large enough to provide sufficient physical resolution, then there is no point
increasing the length N of the DFT—that would only put more points on
the wrong curve.

Another 1ssue related to physical and computational resolution is the
question of how accurately the DFT represents the peaks in the spectrum.
For each sinusoid that 1s present in the signal, say, at frequency fy, the DTEFT
will exhibit a mainlobe peak arising from the shifted window W (f — fy).

When we evaluate the N-point DFT, we would like the peak at fy to
coincide with one of the N DFT frequencies (6). This will happen if there
1s an integer 0 < kg < N — 1. such that

kofs fo
= ko = N—
N 0= AT

Similarly, the peak at the negative frequency, — fy, or at the equivalent
shifted one, f, — fo. will correspond to the integer, —kg, or to the shifted
one N — kq:

(13)

fo= Tk, =

—fo= —AD{S = fi—fo= fs—a[}{‘* (f\-‘r—ﬁ:g)i‘?




In summary, for each sinusoid with peaks at £ fi, we would like our DFT
to show these peaks at the integers:

{fo. =fo} = Afo. fs—fo} = {ko. N —ko}

In general, this 1s not possible because &y computed from Eq. (13) is
not an integer, and the DFT will miss the exact peaks. However, for large
N, we may round kg to the nearest integer and use the corresponding DFT
frequency as an estimate of the actual peak frequency.

A pitfall of using the DFT can be seen in the lower two graphs of Fig. 3,
where it appears that the DFT correctly identifies the three peaks in the
spectrum, for both N = 32 and N = 64.

However, this is misleading for two reasons: First, it is a numerical ac-
cident in this example that the mainlobe maxima coincide with the DFT
frequencies. Second, it can be seen in the figure that these maxima corre-
spond to the wrong frequencies and not to the correct ones, which are:

o0, 22025 2030 (14)

fo 77 fe Js



This phenomenon, whereby the maxima of the peaks in the spectrum
do not quite correspond to the correct frequencies, is called biasing and
is caused by the lack of adequate physical resolution, especially when the
sinusoidal frequencies are too close to each other and the sum of terms
W {(f — fo) interact strongly.

Using Eq. (13), we can calculate the DFT indices £ and N — £ to which
the true frequencies (14) correspond. For N = 32, we have:

ky = Nﬂ =32-020=64, N —k =256
fs

ko = Né =32-025=28 N — kg =24
fs

3 e _ N e — 99

ks = N 7T 32-030=96, N —ky=224

Similarly, for N = 64, we find:

._.-.Tfl_.e O — 19 AT I - B

ki =N—=064-020=128, N —Fky=51.2
fs

ko = Né = 64 - 0.25 = 16, N — ko = 48
Is

._.-rf3_ / 1 — 10Q ¢ N A S

ks = N—=064-030=19.2, N — kg =448

fs



Only the middle one at fy corresponds to an integer, and therefore, co-
incides with a DFT value. The other two are missed by the DFT. We may
round k1 and k5 to their nearest integers and then compute the corresponding

DFT frequencies. We find for N = 32:

hi=64 = k=6 = L1

fs N
__ : ke __
k3 =96 = k=10 = % = \3 — (.3125
and for N = 64:
=128 = k=13 = % = ’E‘\l = 0.203125

:Ii‘
ks =192 = k3=19 = % = \3 = (.296875



The rounding error in the frequencies remains less than f,/2N. It de-
creases with increasing DFT length N. The biasing error, on the other hand,
can only be decreased by increasing the data length L.

Figure 4 shows the spectrum of the same signal but with length L =
100 samples. Biasing is virtually eliminated with the peak maxima at the
correct frequencies. The spectrum is plotted versus the DFT index £, which
1s proportional to the frequency f via the mapping (6), or,

k= Ni (frequency in units of the DFT index) (15)

Is

The Nyquist interval 0 < f < f; corresponds to the index interval () <
k< N. The N-point DFT is at the integer values £ = 0,1, .... N —1.

For plotting purposes, the graph of the spectrum over the full interval
0 < k < N has been split into two side-by-side graphs covering the half-
intervals: 0 < k< N/2and N/2 <k < N.

In the upper two graphs having N = 32. the DFT misses the f; and
f3 peaks completely (the peak positions are indicated by the arrows). The
actual peaks are so narrow that they fit completely within the computational
resolution width A fy,.

In the lower two graphs having N = 64, the DFT still misses these
peaks, but less so. Further doubling of N will interpolate half-way between
the frequencies of the 64-point case resulting in a better approximation.
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Matrix Form of DFT

The N-point DFT (7) can be thought of as a linear matrix transformation
of the L-dimensional vector of time data into an /N-dimensional vector of

frequency data:

[ Irp ] [ )f[} i
I DFT JY]_
X = . — X — .
rr—1J _—XN—I A

with DFT components by X, = X(wg). £ = 0,1,..., N — 1. The linear
transformation is implemented by an N x . matrix A, to be referred to as
the DFT matrix, and can be written compactly as follows:

X = DFT(x) = Ax

Or, CD]T]IJDI]EI]I-W’iSEZ

L—-1
—/Yk — E —'4113-?1 Ln
n=0

(matrix form of DFT)

k=0,1..., N -1

The matrix elements Ay, are defined from Eq. (7):

A;m — €

—Jjwkn — e_gﬂjkﬂfh'r _ Ir['dkrn ' !Il = “ J_ e ;"\"T — ]_

n==01 ..., L -1

(16)

(17)

(18)



For convenience, we defined the so-called rwiddle factor, Wy, as the com-
plex number: _
T][rj\; _ (:'.’_QTT‘T /N (19 )

Thus, the DFT matrix for an N-point DFT is built from the powers of Wy.
Note that the first row (k£ = 0) and first column (n = 0) of A are always
unity:

Ao, =1, 0<n<L -1 and Arp=1, 0<EZSN-1
The matrix A can be built from its second row (k£ = 1), consisting of the
successive powers of Wy

Ay, = Wy, n=~01..., L—1

It follows from the definition that the &th row is obtained by raising the
second row to the kth power—element by element:

Ajn = Whr — (Wn)k = A%

Some examples of twiddle factors, DFT matrices, and DFTs are as fol-
lows: For L. = N and N = 2.4 8, we have:

Wy=e 2M/2 = ¢™ = 1
Wy = e~/ — ommi/2 cos(m/2) — jsin(m/2) = —j

, | . _ 1—
Wy = e72m/8 — ¢=m/4 — cos(7/4) — jsin(m/4) = -

(20)

"

I



The corresponding 2-point and 4-point DFET matrices are:

A B O I |
4= H--’J = L —1}
11 17 1]
B N 21
oo owEowd owpt -1 1 1
1 nf Hf T--I--*f’ | ] 1 7 =1 —y ]

The 2-point and 4-point DFTs of a length-2 and a length-4 signal will be:

Xo| [1 1] [xo] [xo+x
_}{1_ N _1 —1 I N g — a1
Xo| [t 1 1 1] [ao] (22)
_/Yl o 1 —j —1 j I
ng N 1 —1 1 —1 I9
|

X3 J =1 —J| |73

Thus, the 2-point DFT is formed by taking the sum and difference of the
two time samples. We will see later that the 2-point DFT is a convenient
starting point for the merging operation in performing the FFT by hand.



The twiddle factor Wy satisfies, W& = 1. and therefore it is one of
the Nth roots of unity: indeed, in the notation of Eq. (10), it is the root
Wy = zy_1 and 1s shown in Fig. 2. Actually, all the successive powers
Wk, k=0.1,.... N — 1 are Nth roots of unity, but in reverse order (i.e.,
clockwise) than the z; of Eq. (10):

W =e2mkIN = » =271 k=0,1,...,N -1 (23)

Figure 5 shows Wy and its successive powers for the values N = 2.4, 8.

Because Wy = 1, the exponents in W3 can be reduced modulo-V, that is,

we may replace them by I-I--‘ii?kj“mdw}.

W,
=W, ¢ \¢1 Wf¢/ \¢l
_ ;/Jrz_j

Fig. 5 Twiddle factor lookup tables for N = 2,4, 8.



For example, using the property 17} = 1, we may reduce all the powers
of TV, in the 4-point DFT matrix of Eq. (21) to one of the four powers W},
k=0,1,2, 3 and write it as

11 1 I 11 | I
1wy Wi wp 1 Wy, w2 ow}
1 w2 wi w§ 1 w2 1 w2

The entries in A can be read off from the circular lookup table of powers of
Wy in Fig. 5, giving

and for NV = 8,

L%:%;.Tﬁ:y W3 = Y Wi =1
R R , 1+
W = J?j Uﬁ:;,{@::J;



Modulo-N Reduction

The modulo-N reduction or wrapping of a signal plays a fundamental part in
the theory of the DFT. It is defined by dividing the signal x into contiguous
non-overlapping blocks of length /N, wrapping the blocks around to be time-
aligned with the first block, and adding them up. The process is illustrated
in Fig. 6. The resulting wrapped block X has length V.

The length L of the signal x could be finite or infinite. If L is not an
integral multiple of IV, then the last sub-block will have length less than V;
in this case, we may pad enough zeros at the end of the last block to increase
its length to V.

«— N —— N —+— N —s— N —

Xl .‘ ....................
X, oo e
X3 * ___________________________________________________________________________________________________________________

Fig. 6 Modulo-N reduction of a signal.



The wrapping process can also be thought of as partitioning the signal
vector X into N-dimensional sub-vectors and adding them up. For example,
if . = 4N, the signal x will consist of four length-/NV sub-vectors:

X = = X=Xy + X +Xy+ X3 (24)

Example. Determine the mod-4 and mod-3 reductions of the length-8 signal
vector:

x=[1,2 -2 3 4. -2, -1, 1"

For the N = 4 case, we may divide x into two length-4 sub-blocks to get:

1 A 5

N > 9 0

X= 1ol T 21 T |23
I 3_ ] 1_ i :L_

Similarly, for N = 3 we divide x into length-3 blocks:

S T 1 I et B
EIMEIM I

where we padded a zero at the end of the third sub-block. O



We may express the sub-block components in terms of the time samples
of the signal z(n), 0 <n < L — 1, as follows. Form = 0,1, ...

Tm(n)=z(mN+n), n=01,....N—1 (25)

Thus, the mth sub-block occupies the time interval [mN, (m + 1)N). The
wrapped vector X will be in this notation:

r(n) =x9(n) +x1(n) + x9(n) +x3(n) +---

26
=zx(n)+x(N+n)+z2N +n)+x2(3N +n)+--- (26)
forn=0,1,..., N — 1, or, more compactly
r(n) = Z r(mN +n)|, n=20,1...,.N—-1 (27)
m=>0

This expression can be used to define z(n) for all n, not just 0 < n <
N — 1. The resulting double-sided infinite signal is the so-called periodic
extension of the signal x(n) with period N. More generally, it is defined by

z(n) = Z x(mN + n). —00 < 1 < 00 (28)

m=—0oa



——

The signal x(n) is periodic in n with period N, thatis, z(n + N) = x(n).
The definition (27) evaluates only one basic period 0 < n < N — 1 of 2(n),
which is all that 1s needed in the DFT.

The periodic extension interpretation of mod-/N reduction is shown in
Fig. 7. The terms z(n + N)., z(n 4+ 2N ), and z(n + 3N) of Eq. (26) can
be thought as the time-advanced or left-shifted versions of z(n) by N, 2N,
and 3N time samples. The successive sub-blocks of x(n) get time-aligned
one under the other over the basic period 0 < n < N — 1. thus. their sum is
the wrapped signal X.

le— N —la— N —lt— N —t— ] —»|

x(n) = | X X X> X3
x(n+N) = | Xp X X) X3
x(n+2N) = Xo X X X3
x(n+3N) = Xy Xy X, X3
n) = | %

Fig. 7 Periodic extension interpretation of mod-/N reduction of a signal.



The connection of the mod-/N reduction to the DFT is the theorem that
the length-N wrapped signal X has the same N-point DFT as the original
unwrapped signal x, that s,

X=X or, X(wp) = X(wp)|. Ek=0.1,....N—1 (29)

B

where Xj, = X (wr) 1s the N-point DFT of the length- N signal z(n):

N-1
Xp=X(wy) =Y Fm)e =, k=0,1,...,N—1 (30)
n=>0

In the notation of Eq. (17), we may write:

N-1 N-1
X = Z H;‘En z(n) = Agn x(n) (31)

where A is the DFT matrix defined as in Eq. (18):

Agn=WE 0<k<N-1, 0<n<N-1 (32)



The DFT matrices A and A have the same definition, except they differ in
their dimensions, which are N x L and N x N, respectively. We can write
the DFT of X in the compact matrix form:

X = DFT(X) = AX (33)
Thus. the above theorem can be stated in vector form:
X=X=Ax=AX (34)

Symbolically, we will write DFT(x) = DFT(x) to denote Egs. (29) or
(34). The above theorem can be proved in many ways. In matrix form, it
follows from the property that the /N x /N submatrices of the full N'x L DFT

matrix A are all equal to the DFT matrix A.



These submatrices are formed by grouping the first N columns of A into
the first submatrix. the next N columns into the second submatrix, and so
on. The matrix elements of the mth submatrix will be:

A n = WAV = kN yykn
Using the property WX = 1, it follows that W™ = 1, and therefore:
A;,_._thr 4n — T’[’F{fn — Akn — ;i L s () E ,{l n E N —1

Thus, in general, A is partitioned in the form:



As an example, consider the case L = 8, N = 4. The 4x8 DFT matrix A
can be partitioned into two 4 x4 identical submatrices, which are equal to
A. Using Wy = e 27/4 = —j, we have:

1wy wE owEiwlt o owyp wf Wy

1 W2 owE WS wE w0 w2 i
Sow w2 whs o wiE w2t

11 1 1 11 1 1 1 -

W, W 42 W LE 1 Wy, W 49 W .f

W 42 W f W f 1 W 42 W f W f

W f W f W f 1 W LE W f W f |

(36)

o111
_ -7 =1 7|1 =7 =1 J| 373
=11 21 1 211 -1 1 ) oA
L -1 =1 5 -1 =

where in the second submatrix, we partially reduced the powers of Wy
modulo-4.



The proof of the theorem follows now as a simple consequence of this
partitioning property. For example, we have for the N-point DFT of Eq. (24):

o~

= A (X + X1 + X + X3) —Ax=X

— _-IXD + ﬁxl + ;-T‘-[Xg + 4;':{}{3

A~

Figure 8 illustrates the relative dimensions of these operations. The DFT
(33) of X requires N? complex multiplications, whereas that of x requires
NL. Thus, if L > N, it is more efficient to first wrap the signal mod-/N" and

then take 1ts DFT.

e—— | ———

- 4

DELN LN
A A|A|A|f=]4]|
X
X2
X3

Fig. 8 N-point DFTs of the full and wrapped signals are equal.



Example. Compute the 4-point DFT of the length-8 signal
x=1[1,2 -2 34, -2 -1 1"

in two ways: (a) working with the full unwrapped vector x and (b) comput-
ing the DFT of its mod-4 reduction.

Solution: The 4x8 DFT matrix was worked out above, resulting in:

-
)
11 1 11 1 1 17/|-2 [ 6]
J 1 —j =1 1 —j =1 3 8 -4
X=Ax=1, 71 | 11 -1 1 21 A 7] =2
1§ =1 —j 1 3 =1 —j| -2 8 — 4
! M i |
|1

The same DFT can be computed by the DFT matrix A acting on the mod-4
wrapped signal X that we determined previously:

1 1 1 1] 5 G
< v~ |1 —j =1 0| [8+4j
X=Ax=1, 1 1 3| |3] 7| =
1y -1 =i | 4 8 —4j

The two methods give identical results. N



Example. The length L of the signal x can be infinite, as long as the signal
1s stable, so that the sum (27) converges. To illustrate the theorem (29) or
(34), consider the causal signal x(n) = a"u(n), where |a| < 1.
To compute its N-point DFT, we determine its z-transform and evaluate it
at the N'th root of unity points zj, = e/“* = ¢>7*/N_This gives:

1 1

}{(:‘) = — ij = JY(:J]{,) =

. B=0,1..... N—-1
1 —az1

’-.—_1 '

Next, we compute its mod-/N reduction by the sum (27):

#n) =Y amN +n) =Y a™Va" = —— n=01.. N1

m=0 m=>0

where we used the geometric series sum. Computing its z-transform, we
find:

N—-1 N—-1 N N

~ 1 l—a
X(z) = E r(n)z"" = : " = :
(2) (") N L (1—a¥)(1—az1)

?1:{] . n:l]
Evaluating it at = = 2, and using the property that =¥ = 1, we find
~ 1 —aVN 1 —aV 1 _
Xy = : = = X

(1—a¥)(1—azl)  (1—aV)(1—az?) T az;t

Thus, even though z(n) and z(n) are different and have different z-transforms
and DTFTs, their N-point DFTs are the same. O



The built-in function datawrap implements the wrapping process. Using
this function, we may compute the N-point DFT of a length- L signal by first
wrapping it modulo-/N and then computing the N-point DET or FFT of the
wrapped signal:

xtilde = datawrap (x,N);
X = fft(xtilde, N);



The two signals x and X are not the only ones that have a common DFT.
Any other signal that has the same mod- /N reduction as x will have the same
DFT as x. To see this, consider a length-L signal y such that y = x; then its
N-point DFT can be obtained by applying Eq. (34):

Y=Ay=Ay=Ax=Ax=X

For example, the following length-8 signals all have the same 4-point DFT,

Iy xIp + I _;I‘-g + ;I,‘4_ _;1.‘[} + ;1.‘4_ _;1‘-{] + ;174_
rq T T+ Ty Tr{ + Iy T+ Ty
o 9 T9 TIo + Tg T9 + Tg
I T3 T3 T3 Is + I~
Tyl 0 ' 0 ' ) ' 0
Iy Iy 0 0 0
Ig Ig Ig 0 0

| T T .  xe 0

because all have the same mod-4 reduction:

ro+ T4
~ I+ Ty
TIo + Ig
EE + Ir




The above signals have a bottom half that becomes progressively zero,
until the last vector which is recognized as the X, viewed as a length-8 vector.
In fact, the mod-/N wrapped signal X is unique in the above class of signals
in the sense that it is shortest signal, that is, of length NV, that has the same
DFT as the signal x.

An equivalent characterization of the class of signals that have a common
DFET can be given in the z-domain. Suppose the length-L signals y and x
have equal mod-N reductions, y = X and. therefore, equal DFTs X = Y.
We form the difference of their z-transforms:

L-1 L—1
F(z) = X(:) = Y(2) = }_w(m)="" = 3 y(n)z™"
n=>0 n=>0

Evaluating F'(z) at the Nth roots of unity and using the equality of their
N-point DFTs, we find:

Flz)=X(z) =Y (2) = X =Y =0, k=0.1,....N—1



Thus, the N complex numbers z; = ¢/“* = ¢2™*/N are roots of the differ-

ence polynomial F'(z). Therefore. F'(z) will be divisible by the Nth order
product polynomial:

N-1

1— =N =[]0 =22

k=0
which represents the factorization of 1 — ==

zeros. Therefore, we can write:
X(z2)=Y(2) = F(z) = (1 = =Y)Q(2) or,
X(z)=Y() + (1-2"")Q(z) (37)

into its N'th root-of-unity



Because X (z) and Y'(z) have degree L — 1, it follows that Q)(z) is an
arbitrary polynomial of degree . — 1 — N. Denoting the coefficients of
Q(z) by g(n). 0 < n < L —1-— N, we may write Eq. (37) in the time
domain:

r(n)=yn)+qn)—qgn—-—N)| n=0,1,..., L—1 (38)

Thus, any two sequences x(n) and y(n) related by Eq. (38) will have the
same N-point DFT. The mod-N reduction X and its z-transform X (z) are
also related by Eq. (37):

X(2) = (1=2"M)Q(z) + X(2) (39)

Because )Af(.::) has degree N — 1, Eq. (39) represents the division of the
polynomial X (z) by the DFT polynomial 1 — ==V, with X(z) being the
remainder polynomial and ()(z) the quotient polynomial. The remainder
5{'(:) is the unique polynomial satistying Eq. (39) that has minimal degree
N —1.



Inverse DFT

The problem of inverting an N-point DFT is the problem of recovering the
original length-L signal x from its N-point DFT X, that is, inverting the
relationship:

X = Ax= AX (40)

When L > N, the matrix A is not invertible. As we saw, there are in
this case several possible solutions x, all satisfying Eq. (40) and having the
same mod-/N reduction X.

Among these solutions, the only one that is uniquely obtainable from the
knowledge of the DFT vector X is X. The corresponding DFT matrix Ais
an N x N square invertible matrix. Thus, we define the inverse DFT by

X = IDFT(X) = A~'X| (inverse DFT) (41)




Or. CD]T]IJGI]EIH-W’iSE.

-
<
[

A~

7= (A Y, X,, n=01... N-1 (42)
0

o
I

The inverse A~! can be obtained without having to perform a matrix
inversion by using the following unitarity property of the DFT matrix A:

%I A = Iy (43)

where [ 1s the N-dimensional identity matrix and A* is the complex conju-
gate of A, obtained by conjugating every matrix element of A. For example,
for N = 4, we can verify easily:

11 1 111t 1 1 1 1 00 0
Ly _ L1 = =1 gl |t J =1 = _|0 100
4° 411 =1 1 =111 =1 1 —=1 0010

1§ =1 —jll1 =5 =1 000 1




Multiplying both sides of Eq. (43) by A~!, we obtain for the matrix inverse:

A= —
N

1 ~
A*

Thus, the IDFT (41) can be written in the form:

x = IDFT(X) =

1

(inverse DFT)

(44)

(45)



We note also that the IDFT can be thought of as a DFT in the following
sense. Introducing a second conjugation oparation, we have:

=

A*X = (AX*)* = [DFT(X")]

where the matrix A acting on the conjugated vector X* is the DFT of that
vector. Dividing by N, we have:

1
IDFT(X) =

mnT

[DFT(X")]" (46)

4

Replacing DFT by FFT, we get a convenient inverse FFT formula, which
uses an FFT to perform the IFFT. It is used in most FFT routines.

1

AT

[FFT(X) = — [FFT(X")]" (47)

4




Example. To illustrate Egs. (45) and (46), we calculate the IDFT of the
4-point DFT of that we found in a previous example, that is,

1

1
L=
I -1
Lo

11
1
1 -1
1 —j

o 2 =

|
= = D e L2

6
8 4 4j
—2

8 — 4j

The same DFT can be computed by the DFT matrix A acting on the mod-4
wrapped signal X that we determined previously:

i

1
1
1
1

The inverse DFT 1s then.

X = IDFT(X) = %Zi X =

1
~j
—1

j

1

1
—1
|
—1

ek ke

j
—1
~j

1

6
844y

8 — 4




Using Eq. (18) the matrix elements of A= are:

~ I ~ 1

_ \ 1
(AT = A =

where we used the property Wy = e?/N = I-I--}}l. Then. Eq. (42) can be
written in the form:

k
<
-y

1
N
k

(IDFT) Tn = W™ Xl n=0,1,...,1 NV —1 (48)

I
o

In terms of the DFT frequencies wy,, we have X = X (wy) and

U —n.k ?ijnfh'r _ ijkn

Therefore. the inverse DFT can be written in the alternative form:

=
<
—

, | — :
(IDFT) r(n) = N X(wp)e?*™ | n=0,1.....N—1 (49)
0

o
I




DFS

Given any time-periodic signal, z(n), with period N, such as the one con-
structed via the periodic extension,

o0

A

r(n)= Z r(mN +n), —oo<n<oo

mM=—00

[ts N-point IDFT can be thought of as its Fourier series expansion, re-
ferred to as discrete Fourier series (DFS), with the DFT coefficients being
the corresponding Fourier series coefficients, albeit only /N of them are re-
quired to re-build the periodic signal z(n),

N—-1
(DFS) | X(wp) =Y F(n)e ™| k=0,1,....N—1

(IDFS) T(n) = X(wp)e? ™ n=0,1...., N —1




[t expresses the signal z(n) as a sum of NV complex sinusoids of frequen-
cies wx. whose relative amplitudes and phases are given by the DFT values
k—(w‘k)

The forward DFT of Eq. (7) is sometimes called an analvsis transform,
analyzing a signal x(n) into /N Fourier components. The inverse DFT (49)
1s called a svynthesis transform. re-synthesizing the signal z(n) from those
Fourier components. The forward and inverse N-point DETs are akin to the
more general forward and inverse DTFTs that use all frequencies, not just
the NV DFT frequencies:

L—1 27 d’ )
X(w) Z:EE::r(nje_j“”. r(n) = J{ X(w)edvr 9i: (50)
n:D ﬂ. il

The difference between the inverse DTFT and (49) is that Eq. (50) re-
constructs the full original signal x(n), whereas (49) reconstructs only the
wrapped signal z(n). Eq. (49) can be thought of as a numerical approxima-
tion of the integral in (50), obtained by dividing the integration range into
NN equal bins:

o N—1 A
) . dw i : Awp
0

2 — 27

where from the definition (8), we have Awy, /27 = 1/N.



In summary, the inverse of an /N-point DFT reconstructs only the wrapped
version of the original signal that was transformed.

!

ix DFT

mod-N

reduction

[ = >

)
N
L]

Fig. 9 Forward and inverse N-point DFTs.



In order for the IDFT to generate the original unwrapped signal X, it is
necessary to have X = x. This happens only if the DFT length N is at least
L. so that there will be only one length-/N sub-block in x and there will be
nothing to wrap around. Thus, we have the condition:

Xx=x onlyif N>1L (51)

If N = L,thenEq. (51)isexact. [f N > [, then we must pad N —L zeros
at the end of x so that the two sides of Eq. (51) have compatible lengths. If
N < L, the wrapped and original signals will be different because there will
be several length-/NV sub-blocks in x

x#x if N<L (52)




FFT

The fast Fourier transform is a fast implementation of the DFT. It is based
on a divide-and-conquer approach in which the DFT computation 1s divided
into smaller, simpler, problems and the final DFT i1s rebuilt from the simpler
DFETs. For a comprehensive review, history, and recent results, see the [2SP
references [223-244, 303].

Another application of this divide-and-conquer approach is the computa-
tion of very large FFTs, in which the time data and their DFT are too large
to be stored in main memory. In such cases the FFT is done in parts and the
results are pieced together to form the overall FFT. and saved in secondary
storage such as on hard disk.

In the simplest Cooley-Tukey version of the FFT, the dimension of the
DFT is successively divided in half until it becomes unity. This requires the
initial dimension N to be a power of two:

N =28 = B = logy(N) (53)




The problem of computing the N-point DFT 1s replaced by the simpler
problems of computing two (N/2)-point DFTs. Each of these is replaced
by two (N /4)-point DFTs, and so on.

We will see shortly that an N-point DFT can be rebuilt from two (N/2)-
point DFTs by an additional cost of N/2 complex multiplications. This
basic merging step is shown in Fig. 10.

I-DFT 2-DFT 4-DFT 8-DFT

Basic Merging Unit m,gl;} 2
=
N/2-DFT ™. \
N-DFT g
N/2-DFT P T > )

no. of additional
multiplications —

[ i >l >
stage 1 stage 2 stage 3

Fig. 10 Merging two N /2-DFTs into an N-DFT and its repeated application.



Thus. if we compute the two (N/2)-DFTs directly. at a cost of (N/2)?
multiplications each, the total cost of rebuilding the full N-DFT will be:

N\* N N?! N N?
2 +5 =5 +t5~ 5

2

where for large /N the quadratic term dominates. This amounts to 50 percent
savings over computing the N-point DFT directly at a cost of N2,

Similarly, if the two (N/2)-DFTs were computed indirectly by rebuild-
ing each of them from two (N/4)-DFTs. the total cost for rebuilding an
N-DFT would be:

N’ N N N> N N?
(T) +27+5-TH+25=T

1) T4 T2 4 T 27 g

Thus, we gain another factor of two, or a factor of four in efficiency over
the direct N-point DFT. In the above equation, there are 4 direct (/N/4)-
DFTs at a cost of (N/4)? each, requiring an additional cost of N/4 each
to merge them into (N/2)-DFTs, which require another N /2 for the final
merge.



Proceeding in a similar fashion, we can show that if we start with (/N /2™)-

point DFTs and perform m successive merging steps,
A2 N
:;m 1 %m (54)

The first term, N?/2™, corresponds to performing the initial (N/2™)-
point DFTs directly. Because there are 2™ of them, they will require a total
cost of 2™(N/2™)2 = N2 /2™,

However, if the subdivision process is continued for m = B stages, as
shown in Fig. 10, the final dimension will be N/2™ = N/2B = 1, which
requires no computation at all because the I-point DET of a [-point signal
is itself.

In this case, the first term in Eq. (54) will be absent, and the total cost
will arise from the second term. Thus, carrying out the subdivision/merging
process to its logical extreme of m = B = logy(/N) stages. allows the
computation to be done in:

Lo | =
=
I
Lo | =

Nlogy(N)| (FFT computational cost) (35)




[t can be seen Fig. 10 that the total number of multiplications needed
to perform all the mergings in each stage is N/2, and B is the number of
stages. Thus, we may interpret Eq. (55) as,

N

e T N
(total multiplications) = (multiplications per stage) X (no. stages) = ?B

For the N = 8 example shown in Fig. 10, we have B = log,(8) = 3
stages and /2 = 8/2 = 4 multiplications per stage. Therefore, the total
costis BN/2 = 3 -4 = 12 multiplications.




Next, we discuss the so-called decimation-in-time radix-2 FFT algo-
rithm. There 1s also a decimation-in-frequency version, which is very simi-
lar. The term radix-2 refers to the choice of NV as a power of 2. in Eq. (53).

Given a length-/V sequence x(n), n =0,1,..., N — 1, its N-point DFT
X (k) = X(wg) can be written in the component-form of Eq. (17):

Zu kn ). EF=0.1.....N—1 (56)

The summation index n ranges over both even and odd values in the
range 0 < n < N — 1. By grouping the even-indexed and odd-indexed
terms, we may rewrite Eq. (56) as

X (k) = Zu (2n) . +ZH 2n+D) o (2n + 1)



To determine the proper range of summations over n, we consider the two
terms separately. For the even-indexed terms, the index 2n must be within
the range 0 < 2n < N — 1. But, because V is even (a power of two), the
upper limit N — 1 will be odd. Therefore, the highest even index will be
N — 2. This gives the range:

— 1

| N
0<2<N-2 = 0<n<3

Similarly. for the odd-indexed terms. we must have 0 < 2n 4+ 1 < N — 1.
Now the upper limit can be realized, but the lower one cannot; the smallest
odd index 1s unity. Thus, we have:

| i .. - N
1<2n+1<N-1 = 0<2n<N-2 = [}g-rz§§—1
Therefore. the summation limits are the same for both terms:

N/2-1 N/2—1

Z WAz @2n) + Y W a0 +1) (57

n=>0



This expression leads us to define the two length-(/N/2) subsequences:

g(n) = x(2n) .. N
, n=01,...,——1 58
h(in)=x(2n+1) " 2 (58)
and their (N/2)-point DFTs:
N/2-1
Z W ,ffﬂj n
N
F\,/zl E=0,1,..., 5_1 (59)
Z W ;{ft}z h(n)




Then, the two terms of Eq. (57) can be expressed in terms of G(k) and
H (k). We note that the twiddle factors W and Wy /5 of orders N and NV/2
are related as follows:

W s = =20/ (N/2) — o=ami/N _ yyr2
Therefore, we may write:
Wl = (Wykn = wihn, o W@ = wk wke = wkwkn,

Using the definitions (58), Eq. (57) can be written as:

N/2—1 N/2—1
X (k) E;Ihmﬂn+ﬂk§:ﬂhmhm
n=>0
and using Eq. (39),
X(k)=G(k)+WEH(k)| k=0.1,...,.N—1 (60)

This is the basic merging result. It states that X (%) can be rebuilt out of the
two (N/2)-point DFTs Gi(k) and H (k). There are N additional multiplica-
tions, WE H (k).



Using the periodicity of GG(k) and H (k). the additional multiplications
may be reduced by half to N/2. To see this. we split the full index range
0 <k < N — 1 into two half-ranges parametrized by the two indices & and
k+ N/2:

Uﬁﬂﬁ —1 —

|_\.>| =

Therefore, we may write the N equations (60) as two groups of N/2
equations:

X (k)= G(k)+WrH(k) N

, k=0,1,..., 51
X(k+N/2) = Gk + N/2) + WP H(E + N/2) 2

Using the periodicity property that any DFT is periodic in & with period its
length, we have G'(k + N/2) = G/(k) and H(k + N/2) = H(k). We also
have the twiddle factor property:

N2 _ ( E—Eirj,’N)NfQ

_ i
Va S L |

Then, the DFT merging equations become:

X(k) = G(k) +WEH(k N
) = GLE) o W o N e
X(k+ N/2) = G(k) — Wk H(k) 2




They are known as the buitterfly merging equations. The upper group gen-
erates the upper half of the N-dimensional DFT vector X, and the lower
group generates the lower half. The N/2 multiplications W& H (k) may be
used both in the upper and the lower equations, thus reducing the total extra
merging cost to NV/2. Vectorially, we may write them in the form:

"X, 1 [Go 1 THy 1 _T"T-";E.r -
X1 |G . H, ) Wi

_skrh-'j'ﬂ—l ] _C;ﬂr,'rQ—l_ —Hh'rfﬂ—l | _T"T—"'},?rﬁ_l_ (62)
Xnp ] [Go 1 [Ho ] [1%

X+ | | Ga I, ) Wl

| Xn_1 | Gnja—1 | Hpyjo—1 _I-‘i—-"' F{s:rjz—l _

where the indicated multiplication 1s meant to be component-wise. To-
gether, the two equations generate the full DFT vector X. The operations
are shown below.



N/2-DFT N-DFT

T A
N2 G
+
{_ ___________ X
N2 Wy |H -
Y ¥

Fig. 11 Butterfly merging builds upper and lower halves of length- N DFT.



As an example, consider the case N = 2. The twiddle factor is now
Wy = —1. but only its zeroth power appears W3 = 1. Thus. we get two
[-dimensional vectors. making up the final 2-dimensional DFT:

[Xo] = [Go] + [Ho 73]
1] = [Go] - [Ha W3]

For N = 4, we have W, = —j, and only the powers W, W/ appear:
[ Xo|  [Go] . Ho WY
Xi| |Gy T | HoWy
—){9 | B [ ;’D_ —H 0 ”:E |
_)fg _ o i ?1 | B i H 1 Ulll _
And. for N = 8, we have:
Xo|  [Gol  [HoWdT
JY]_ L C]f 1 —I— H 1 I"I"'ral
ng N & 2 H ) HTB?
_){3 | i G 3 ] i H 3 ”783 |
X, | (G| [HoWY
){5 B G 1 H 1 Hg
)(6 e 2 B H 9 Hg
JYT G 3 H 3 H:;_?




To begin the merging process shown in Fig. 10, we need to know the
starting one-dimensional DFTs. Once these are known, they may be merged
into DFTs of dimension 2.4.8. and so on. The starting 1-point DFTs are
obtained by the so-called shuffling or bit reversal of the input time sequence.
Thus, the typical FFT algorithm consists of three conceptual parts:

[. Shuffling the N-dimensional input into N length-1 signals.
2. Performing N length-1 DFTs.
3. Merging the N length-1 DFTs into one N-point DFT.

Performing the one-dimensional DFTs is only a conceptual part that lets
us pass from the time to the frequency domain. Computationally, it is trivial
because the one-point DFT X = [X{] of a 1-point signal x = [x¢] is itself,
that is. Xo = xp. as follows by setting N = 1 in Eq. (56).



The shuffling process is shown in Fig. 12 for N = 8. Ithas B = log,(N)
stages. During the first stage, the given length-/N signal block x 1s divided
into two length-(/N/2) blocks g and h by putting every other sample into g
and the remaining samples into h.

During the second stage, the same subdivision is applied to g, resulting
into the length-(N/4) blocks {a. b} and to h resulting into the blocks {c, d},
and so on. Eventually, the signal x is time-decimated down to N length-1
subsequences.

These subsequences form the starting point of the DFT merging process,
which 1s depicted in Fig. 13 for N = 8. The butterfly merging operations
are applied to each pair of DFTs to generate the next DFT of doubled di-
mension.



Po=Dpy

Qv=¢q, . etc.
—>
DFT-merge

[«—— bit reversal/shuffling ———}=— |-DFT —*

Fig. 12 Shuffling process generates N 1-dimensional signals.
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Fig. 13 DFT merging.



To summarize the operations, the shutfling process generates the smaller
and smaller signals:

x — {g.h} — {{a,b}.{c.d}} — --- — {l-point signals}
and the merging process rebuilds the corresponding DFTs:

{1-point DFTs} — .-+ — {{A.B}.{C.D}} — {G.H} — X



The shuffling process may also be understood as a bit-reversal process,
shown in Fig. 14. Given a time index n in the range 0 < n < N — 1, it may
be represented in binary by B = log,(N) bits. For example, if N = 8 = 23,
we may represent n by three bits {bg, b1, bo }, which are zero or one:

n = (byby by) = by2% + b2 + by2°

The binary representations of the time index n for x,, are indicated in
Fig. 14, for both the input and the final shuffled output arrays. The bit-
reversed version of n is obtained by reversing the order of the bits:

r = bitrev(n) = (b by by) = bp2? + by 2! 4 by2°

We observe in Fig. 14 that the overall effect of the successive shuffling
stages is to put the nth sample of the input array into the rth slot of the output
array, that 1s, swap the locations of x,, with z,., where r is the bit-reverse of
n. Some slots are reverse-invariant so that » = n: those samples remain
unmoved. All the others get swapped with the samples at the corresponding
bit-reversed positions.



000
001
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011
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Fig. 14 Shuffling is equivalent to bit reversal.
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FFT Computation

The built-in MATLAB function fft is very fast and efficient,

X

90 9P dP dP dP dP dP oP o of

= fft(x,N); % N-point FFT

if N is omitted, it uses N = L = length(x)
if N > L, it pads N-L zeros at the end of x before processing
if N < L, it incorrectly truncates the signal to length N
without wrapping it mod-N
this can be fixed by using datawrap,
X = fft(datawrap(x,N) ,N);

X can be an LxK matrix of K columns of length-L
the FFTs of all columns are returned into the NxK output X
again, correct calculation requires N >= L

Next, we present some FFT examples. In the merging operations from 2-
point to 4-point DFTs and from to 4-DFTs to 8-DFTs, the following twiddle
factors are used:

WOl T 1 :
W 1 Wl (1—4)/v2
1141 — | _ il I.-I.-—-"SQ - —j

el L= +)/v2.



Example. Using the FFT algorithm, compute the 4-point DET of the 4-point
wrapped signal of a previous example, x = [5, 0, —3, 4].

Solution: The sequence of FFT operations are shown in Fig. 15. The
shuffling operation was stopped at dimension 2, and the corresponding 2-
point DFTs were computed by taking the sum and difference of the time
sequences, as in Eq. (22). The DFT merging stage merges the two 2-DFTs
into the final 4-DFT.

5 5 | ,opr | 2 ) 2 6
0 >< 3 ] 8 8+4j
3 0 [>rppr| 4 | 1 4 )

4 > 4 4 | 5 4j | 84

Fig. 15 4-point FFT example.



Example. Using the FFT algorithm, compute the 8-point DFT of the fol-
lowing 8-point signal:

x=[4,-3,20, -1, -2 3 17

Then, compute the inverse FFT of the result to recover the original time
sequence.

Solution: The required FFT operations are shown in Fig. 16. Again, the
shuffling stages stop with 2-dimensional signals which are transformed into
their 2-point DFTs by forming sums and differences.

|«— shuffling —»{«2-DFT»|« DFT merging >
41— 44 |3 |3 8 8 -
-3 -1 5 5 S5+ | 54 S+j+\2
2 >< 2 s |1|_|> 2 2 "\ f" 2+6j
0 3 a4 4 j 5. 5-j "‘%..f 5-j+j\2
-1 - -3 -5 -5 4 1 -4 /\ 12
2 2 " -1 - -1 145 | (1=HN2 2 / \"' 5+j-j\2
3 >< 0 1|1 1 6 -j } 6j -2-6j
1 - 1 1 i -1 5 ) j 147 [-(1+)N2 N2 5-j-/\2

Fig. 16 8-point FFT example.



The inverse FFT is carried out by the expression (47). The calculations
are shown in Fig. 17. First, the just computed DFT is complex conjugated.
Then, its FFT is computed by carrying out the required shuffling and merg-
ing processes. The result must be conjugated (it is real already) and divided
by N = & to recover the original sequence Xx.

l«—— shuffling —=}«—2-DFT —|« DFT merging -
4 . 4 . 4 | 16 |16 12 12 32
5-j-j\2 -2-6j 12 | s | s 20 |20 24
2-6j >\\/ 12 >< 26 | | 41| | 4 20 |20 '"-.HI !;' 16
54j-j\2 246 > -246] ] 125 |+ -12 4 4 Hd.f' 0
12 Y 5.2 ] 55\2 _ 10-2j 10-2j 20 1 20 ;'f""'.ﬁ -8
5-+V2 |/ Y5+57\2 52| | -27\2 - 272 2V2(14)| (1-)M2 -4 f \l -16
-2+6] \ 5-j+i\2 >< S+j-j\2 10427] 1 | [1042f -4j j T4 24
SN2 | 547472 | S++\2 " 202 | Tl 2v 22014 (1402 | | 4 8

Fig. 17 8-point inverse FFT of the FFT in Fig. 16.



Circular Convolution

In the frequency domain, convolution of two sequences h and x is equivalent
to multiplication of the respective DTFTs:

Theretore, y(n) can be recovered by the inverse DTFT of the product of the
two DTFTs:

y(n) :f }r __'}n.n..’ﬂ dw / H j....m dw (()_1.)

o o

Symbolically, we write Eq. (64) as:
y = IDTFT(DTFT(h) - DTFT(x)) (65)

Equation (64) is not a practical method of computing y(n) even in the
case of finite-duration signals, because the w-integration requires knowledge
of Y (w) at a continuous range of w’s.



A practical approach would be to replace all the DTFTs by N-point
DETs. But if Eq. (64) is replaced by an inverse DFT, we saw in Eq. (49)
that it will reconstruct the wrapped signal y(n) instead of the desired one:

| N—1 1 N-—-1
u(n) =5 2_ Y (@ eI = H{(wp) X (wp)e”*" (66)
k=0 N k=0
y = IDFT(DFT(h) - DFT(x)) (67)

Because the unwrapped y is the ordinary convolution y = h * X, we can
write the above as the wrapped convolution:

V=hxx= IDFT(DFT(h) - DFT(x)) | (circular convolution)  (68)




This expression is the definition of the length- /N or modulo-N circular con-
volution of the two signals h and x. A fast version 1s obtained by replacing
DFTs by FFTs resulting in:

—~

i

¥ = h*x = IFFT(FFT(h) - FFT(x))

(69)

If h and x are length-/V signals, the computational cost of Eq. (69) is the
cost for three FFTs (i.e.. of x, h. and the inverse FFT) plus the cost of the
N complex multiplications Y (wy) = H(wp)X(w). £ =0,1,..., 1 N — 1.

Thus, the total number of multiplications to implement Eq. (69) is:

1
3 5 Nlogy(N)+ N

(70)



Some alternative ways of expressing y can be obtained by replacing h
and/or x by their wrapped versions. This would not change the result be-
cause the wrapped signals have the same DFTs as the unwrapped ones, that

is, DFT(h) = DFT(h) and DFT(x) = DFT(x). Thus, we can write:

y — h+x = IDFT DFT(h

i

— h*X = IDFT DFT( h
(71)

i
A~

(DFT(h) - )
(DFT(h) - ))
— h *x = IDFT(DFT(h) - DFT(x))
— h+x = IDFT(DFT(h) - )



According to Eq. (51). in order for the circular convolution y to agree
with the ordinary “linear” convolution y, the DFT length /N must be chosen
to be at least the length L, of the sequence y. We recall that if a length-L
signal x 1s convolved with an order-M filter h, the length of the resulting
convolutional output will be L, = L + M. Thus, we obtain the constraint
on the choice of V:

o~

y=y onlyif N>L,=L+M (72)

With this choice of NV, Eq. (69) represents a fast way of computing linear
convolution. Because both the filter and input vectors h, x have lengths less
than N (because L + M = L, < N), we must increase them to length N
by padding zeros at their ends, before we actually compute their N-point
FFTs.

If N < L,, part of the tail of y gets wrapped around to ruin the beginning
part of y. The following example illustrates the successive improvement of

the circular convolution as the length /N increases to the value required by
(72).



Example. For the values N = 3,5, 7,9, 11, compute the mod-/\V circular
convolution of the two signals:

h=[1.2,-1.1], x=[11212211]

Solution: For this example, we work exclusively in the time domain and
perform ordinary convolution and wrap it modulo-/N. The convolution table
method, or the function conv, gives the output signal:

y=x+h=[1,3,353,74,33,0,1]

The mod-3 circular convolution is obtained by dividing y into length-3
contiguous blocks, wrapping them around. and summing them to get:

y=[1.3.3][5.3.7][4.3.3][0.1.0] = §=1[10.10.13]

where we padded a 0 at the end to make the last block of length-3. In a
similar fashion. we determine the other cases:



(mod-5):
y=11,3,3,53][7,4,3,3,0][1] = y=1[9,7,6,8,3]

(mod-7):

y=11.3,3,5.3,7,4][3.3,0,1] = y=1[4.6,3,6,3,7,4]
(mod-9):

y=11,3,3,53,7.4.3.3]0.1 = y=][1,4,3,53,7,4,3,3]
(mod-11):

y=11,3,3,5,3,7,4,3,3,0,1] = y=1[1,3,3,5,3,7,4,3,3,0,1]

As N increases to L, = L + M = 8 + 3 = 11, the lengths of the parts
that get wrapped around become less and less, making y resemble y more
and more. ]



Example. Recompute the length-3 circular convolution of the previous
example by first wrapping mod-3 the signals h and x, performing their linear
convolution, and wrapping it mod-3.

Solution: We find for the mod-3 reductions:

h=[1.2-1][1] = h=[22 —1]
x=[1,1,2][1.2,2][1,1] = X=[3,4.4]

The convolution of the wrapped signals 1s:

A~
——

hsx=1[2,2,—1]%([3,4,4] = [6,14, 13,4, —4]

and. 1ts mod-3 reduction:

i
——

h+X=1[6,14.13]4,—4] = h=*X=[10,10,13]

which agrees with y. in accordance with Eq. (71). O



Example. Compute the mod-4 circular convolution of the following sig-
nals in two ways: (a) working in the time domain, and (b) using DFTs.

h=[1,2.21. x=][1,3.3.1

Solution: The linear convolution is:
y=hxx=1[1,221]«[1,3,3,1] = [1.5, 11,14, 11,5, 1]
wrapping it mod-4, we get:
y= 1,511, 14][11,5.1] = y=[12,10,12, 14]

Alternatively, we compute the 4-point DFTs of h and x:

o1 1 111 6
I FEEE T I ) R B
H=1, _1 1 _1l121=1] o
15 -1 =] 1] -1+
11 1 1] [1] 8 ]
I EEE I I Y B GO
X=11 1 1 21l131=1 o
oy -1 o 1] [—2+2)




Multiplying them pointwise, we get:

Yy [ Ho X, | A8
v _ if [ HiXi| |4
Ys Hy X5 0
Ys Ha X5 —4

To take the inverse DFT, we conjugate, take the 4-point DFT, divide by 4,
and conjugate the answer:

y = IDFT(Y) = %[DFT(Y*)}*

11 1 1] [ 48 ] 2]
~ 1|1 —j =1 gl =45 |10
Y=7 011 =1 1 1| o | |12

1 G =1 —i| | 45 14

The final conjugation is not necessary because y is real. O



Deconvolution

Besides the efficient computation of convolution. the FFT can also be used
to determine the impulse response of an unknown system, such as the re-
verberation impulse response of a room. Given a length-N input and a
corresponding length- N measured output, we may compute their N-point
DFTs and solve for the DFT of the impulse response of the system:

. , Y (wp o
Yiwg) = H(wi) X (wi) = H(wi) = ( k) E=01...,N—
X {\'u.,’;g)
Then, taking the inverse DFT, we have:
N—1 N-1,,
}i(n) _ % H{wgﬂ) Jwrn % j—;({t"-'k) E,jwkn (?3)
k=0 N = X wr)
or, symbolically,
- DFT(y) FFT(y)
h = IDFT — | = IFFT = 74
[DFT[X)] [FFT{X) (74)

The result is again the wrapped version E(n) of the desired impulse re-
sponse. For this type of application, the true impulse response A(n) is typi-
cally infinite, and therefore, its wrapped version will be different from /(n ).
However, if the wrapping length V' is sufficiently large, such that the ex-
ponentially decaying tails of h(n) can be ignored. then /A (n) may be an
adequate approximation.



Overlap-Add and Overlap-Save Methods

When the length L of the input signal x 1s infinite or very long, the length
L, = L + M of the output will be infinite and the condition (72) cannot be

satisfied.

A practical approach is to divide the long input into contiguous non-
overlapping blocks of manageable length, say L samples, then filter each
block and piece the output blocks together to obtain the overall output, as
shown in Fig. 18, as discussed in I2SP Ch.4. Thus, processing is carried out

on a block by block basis.

e [ ——e—— [ —»
X = block x block X4 block x5

a Y e :

| > : |
Yo= t M Lﬁimp

Y = L M Hitj"p
h=|M+1 i Vo= L M

i filter i i i

n=0 n=L n=2L n=3L

Fig. 18 Overlap-add block convolution method.



This is the overlap-add method of block convolution. Each of the input
sub-blocks xg, X1, Xs. ..., is convolved with the order-M filter h producing
the outputs blocks:

Yo = h*Xp
y; = hxxy (75)
Vo, = h* xo

and so on. The resulting blocks are pieced together according to their ab-
solute timing. Block y, starts at absolute time n = 0; block y, starts at
n = L because the corresponding input block x; starts then; block y, starts
at n = 2L, and so forth.

Because each output block is longer than the corresponding input block
by M samples, the last M samples of each output block will overlap with
the first M outputs of the next block.



Note that only the next sub-block will be involved if we assume that
2L > L+ M, or, L > M. To get the correct output points, the overlapped
portions must be added together (hence the name, overlap-add).

A fast version of the method can be obtained by performing the convolu-
tions of the input blocks using circular convolution and the FFT by Eq. (69).
The FFT length N must satisty Eq. (72) in order for the output blocks to be
correct. Given a desired power of two for the FFT length N, we determine
the length of the input segments via:

N=L+M = L=N-M (76)

With this choice of N, there would be no wrap-around errors, and the out-
puts of the successive input blocks {Xg, X1, ... }, can be computed by:

Yo = IFFT(FFT(h) - FFT(xo))

Yo
y, =V, = IFFT(FFT(h) - FFT(x;)) 77)
Y, =¥, = IFFT(FFT(h) - FFT(x2))

and so on.



In counting the computational cost of this method, the FFT of h need
not be counted. It can be computed once, H = FFT(h), and used in all
convolutions of Eq. (77). We must only count the cost of two FFTs plus the
N pointwise multiplications. Thus, the number of multiplications per input

block 1is: .
QEN logg N + N = N(logy N + 1)

This must be compared with the cost of (M + 1)L = (M + 1)(N — M)

for performing the ordinary time-domain convolution of each block with the
filter. The relative cost of the fast versus the conventional slow method is:
fast N(logs N +1) logy N

= ~ 78
slow (M +1)(N—M) M (78)

where the last equation follows in the limit N > M > 1.



The overlap-save fast convolution method is an alternative method that
also involves partitioning the input into blocks and filtering each block by

Eq. (69). The method is sh

own in Fig. 19.

- N >
X= X0 i M
<« N-M —> X1 : M
<« N-M —» X7 i M
3 N . - N-M —>|
Yo =| M N-M
Y1~ M N-M
A M N-M
X
n I=0 n :j"\I!—M n= 2(}V—M) n:3(1!’\f—M)

Fig. 19 Overlap-save method of fast convolution.



In this method, the input blocks have length equal to the FFT length,
L = N, but they are made to overlap each other by M points, where M is
the filter order. The output blocks will have length L, = L + M = N + M
and therefore, do not satisfy the condition Eq. (72).

It the output blocks are computed via Eq. (69). then the last M points
of each output block will get wrapped around and be added to the first M
output points, ruining them. This is shown in Fig. 20. Assuming N > M,
the remaining output points will be correct.

<« N+M ——

<

!
2
<

M

M N-M

|
Il

-« N ——

Fig. 20 Mod-N reduction of output block ruins first M output samples.



As shown in Fig. 19, because the input blocks overlap by M points, when
the wrapped output blocks are aligned according to their absolute timings,
the first M points of each block can be ignored because the correct outputs
have already been computed from the previous block.

There 1s only one exception, that is. the very first M points of the output
sequence are not computed correctly. This can be corrected by delaying the
input by A time units before commencing the filtering operation.

The computational cost of the method is essentially the same as that of
the overlap-add method, with the relative performance over conventional
convolution given by Eq. (78).



Example. Using the overlap-save method of fast convolution, imple-
mented in the time domain by mod-8 circular convolutions, compute the
linear convolution of the “long™ input:

x=1[1,1,1,1.3,3,3,3,1,1,1,2,2,2,2,1,1,1,1]

with the “short™ filter:
h = [1. —1.—1. 1]

Solution: For comparison, we compute the linear convolution using the
convolution table:

y=11,0,-1,0,20,-2,0,-2,0,2,1,0,—-1,0,—1,0,1,0, —1,0, 1]

For the overlap-save method, we divide the input into length-8 blocks which
overlap by M = 3 points. These blocks are:

x=[1,1.1.1.3,(3.3.3].1.1.[1.2.2).2.2. (1.1.1].1,0.0,0.0)



Convolving these blocks with h gives:

yo=h=[1.1,1,1.3,3,

y, =h«*[3,3,3,1,1,

Y2:h$].7)29_111
ys=hx[1.1.1.1.0,0.0.0]

1‘

1,2

1,0,-1,0,2,0,-2,0,-3,0,3]
3,0,—3,-2,0.2.1,0,—3,0,2]
1,1,-1,—-1,0,-1.0,1,—1,0.1]
1,0.—1.0,—1,0,1.0.,0.0,0]

Reducing them modulo-8 and ignoring the first M points (indicated by ),

Yo
Vi
\F
Ya

*,
*,

*,

*,

*,

*,

*, ok, ok,

%

*'.'

*'.'

0,2,0,—2.0]
—2.0.2,1,0]

~1,0,—1,0,1]

0,—1,0,1,0]

These would be the outputs computed via the FFT method. Putting them
together, we obtain the overall output signal:

y = [, %,% 0,2 0, =2, 0[[-2,0,2

1,0][=1,0,—1,0,1][0, 1,0, 1, 0]

With the exception of the first 3 points, the answer is correct. O



further notes on fast convolution & project-5

The following MATLAB example clarifies the operations that are
required for implementing the overlap-add and overlap-save method
both in the time-domain and in the frequency-domain via the FFT. It
uses the built-in function buffer. This code can serve as the basis of
the functions ovadd and ovsave required in project-5.

The script for this example, ov1l.m, as well as the overlap-add
function, ola.m, are included as part of project-5.

The function ola will be needed also in future projects.




h = [12 -11]; overlap-add example
x=[11212211232311];

v = conv(h,x);

5y =

% 1 3 3 5 3 7 4 3 66 S 5 3 4 0 1 % expected result
N = 8; % fft length

M = length(h)-1; % filter order

L = N-M; % block length, L=5

Xb = buffer(x,L);

a@

divide x into length-L blocks

Xb =

@ o d@ o @ o®
NN e e
W W = =N
o o o =2

Y = []; . for-loop acts on each column of Xb

for s = Xb
ys = conv(h,s);
Y L+ ]

= [Y,vys]; T collect output columns
end



o @ o® o\

df o @ o0 oGP g o @ P

oo

@

1 3 3
2 5 1
1 3 1

overlapp-add:

compare with vy:

1 3 3

(o3}

overlap-add example

1 3 3

alternatively,

3 5 -1
9 4 0
1 0 0

5 -1 2
2 5 1 &6
7 4 3 6
7 4 3 6
ola(Y,N-M) ;

L+ ]
-
(=)

FFT method for computing Y \\\

ffe (h(:) ,N);

[1;

N-M

hop size here

function ola is included in project-5




overlap-add example

FFT method for computing Y

o\@

H = fft(h(:),N);
Y = [];
. for-loop acts on each column of Xb
for s = Xb
Y8 = H.*fft(s,N); real( ) is required to remove numericall
yvs = real (1fft (Ys,N)) ; «— g : ) y
Y = [Y,ys]; generated very small imaginary parts
end
$ Y' =
% 1 3 3 5 3 5 -1 2
% 2 5 1 6 9 4 0 3 <«— same block outputs as before
% 1 3 1 0 1 0 0 O

e

alternatively, without loops,

Nb = size (Xb,2);

Hb = repmat (H,1,Nb) ;

Y = real (ifft (Hb.*fft (Xb,N), N) ;

no. of frames
replicate FFT
do all FFTs at once

o®  o\@
o o\@

o
o



% use same h,x, and FFT length N=8 Overlap-Save example

@

Y:

@

1 3 3 5 3 7 4 3 6 9 5 3 4 0 1 % expected result

Xb = buffer([x(:); zeros(M,1)], N, M);

I
z Xb =
% 0o 2 1 length-N blocks overlapped by M samples
% 0 1 3
% 0 2 3 ]
o T o 1 M zeros are inserted by buffer at the
% 1 1 1 beginning, and M zeros are padded at the end
% 2 1 0
% 1 3 0
% 2 3 0
Y = [];
for s = Xb

ys = conv(h,s); «—— time-domain version, runs over the columns of Xb
Y = [Y:YS] H

o\
b
L
]
-
i
W
(o}
o
.
o
w



a® 2@ &P &9 &0 A0 0 P R @ 8P o® a8 &9 d@ a0

wrap each block mod-N:

overlap-save example

A

wrapped blocks




overlap-save example

output the wrapped blocks by their start-times,
ignoring the first M samples of each block

@

(6 -1 2)1 3 3 &5 3

a@  a\@
[}
u
L
=]
P

— had

|,_I.
[0}

L

oo D

L

s

i

L

|,_I.

oh@

compare with v:
}’:

oh@

@

1 3 3 5 3 7 4 3 6 9 5 3 4 0 1



FET method overlap-save example

@

H = fft(h(:),N);

Y = [];

for s = Xb
vs = real (ifft(H.*fft(s,N), N));
Y = [Y, ysl;

end

or, w/o loops,
Y = real(ifft (repmat(H,1l,size(Xb,2)) .*¥fft (Xb,N) ,N)) ;

o@  o\®

% round(Y')
% 5 -1 2 1 3 3 5 3
% 6 5 5 7 4 3 6 9

1 5 8 5 3 4 0 1

Y(1:M,:) = [1; % discard first M outputs from each frame
v = Y(:)'; % concatenate frames

5y =

% 1 3 3 5 3 7 4 3 66 9 5 3 4 0 1



ola function

o°

ola.m - overlap-add procedure

o°

o°

Usage: y = ola(Y,R)

o°

o°

Y = NxM matrix of columns to be overlap-added by hop-size R
R = hop-size, must be 0 < R <= N, R=N (no-overlap)

o° oP°

o°

Y column vector of overlap-added columns

function y = ola(Y,R)

_ . -~ N —
[N,M] size (Y); N overlap-add
y= Yo
— * — °
L = R*¥*(M-1)+N; — R —> Y1
y = zeros(L,1); hop-size «— R —» A %)
e R —>
n= (1:N)'; B

for m = 0:M-1
y(m*R + n) = y(m*R + n) + Y(:,m+1);
end




Matched Filter

assume pulse and filter, s(n), h(n), have duration, 0 < n < ng
x(n) = s(n) + v(n) = signal + noise

ys(n) Z h(m)s(n —m) = filtered signal

Yp(n) Z h(m)v(n —m) = filtered noise

and. because of the finite duratu}ns,

T
Ys(ng) Z h(m)s(ng —m)
m=(
1 2
Z h(m)s(ng —m)
|ys(ﬂ|:l)|E m=0
SNR = 5T = = max
o Z h (m)
?Tl—




Cauchy-Scwarz inequality:
Z h?(m) Z s*(ng —m)

2
Z h(m)s(ng — m)
__?n_- m=0 {: EE: (ﬂg —-?ﬂ
Z h*(m) Z h*(m) m=0
m=0

m=0

optimum solution:

h(m) = s(ng —m) = matched filter | m =0.1,..., ng

ys(n) = Z h(m)s(n —m) = Z s(ngp —m)s(n —m) = Rg(n — no)

T

ys(n) = Rss(n — no)

(autocorrelation)
|'y('n'l])|max — Rss([})




for a delayed received signal, r(n) = s(n—D), we have the cross-correlation:

yp(n) = Z him)r(n —m) = Z’r n—m)s(ng —m) = R,s(n — ng)

3

yp(n) = Rs(n —ng) =ys(n — D) = Res(n —nog — D)
yr{ﬂﬂ + D} — qu(D} — Rss([]} — ys(”[].}}

Slmax

1.e., matched filter output peaks ng samples later than the cross-correlator.



