DSA — March 29, 2021

Topics: Digital filter design, IIR filter design, bilinear transformation method,
notch, peaking, audio EQ filters, higher-order filters, Butterworth, Chebyshey,
Elliptic, FIR filter design, window method, Kaiser windows, frequency-sampling
method.
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i< ( analog filter
v bilincar Kde&gn method
digital filter | transformation analog filter
H(z) s =f(2) H,(s)
H(z) = Ha(s) = H,(f(2))
s=f(z)
H[w} — Hn({il} — Hn(”{w))
2=g(w)




For a more unified and complete discussion that includes all cases,
Butterworth, Chebyshev, and Elliptic, see the handout, notes.pdf
with associated MATLAB functions included in, notes-mfiles.zip.

Elliptic filters, also known as, Cauer or Zolotarev filters, achieve the smallest
filter order for the same specifications, or, the narrowest transition width for the
same filter order, as compared to other filter types.

On the negative side, they have the most nonlinear phase response over their
passband. The following table compares the basic filter types with regard to
filter order and phase response.

Bessel 3
smaller order, or, Butterworth | more linear phase
narrower transition | Chebyshev over their passband
{ Elliptic

Bessel filters have, by design, the most linear phase in their passband
but the slowest rolloff — we will consider them in I12SP-Ch.12.
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Brick wall specifications for a Butterworth filter.
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passband and stopband gains
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bilinear
digital filter transformation analog filter
specifications Q = g(w) specifications
i< ( analog filter
v bilinear Kde&gn method
digital filter transformation analog filter
H(z) s =f(2) H,(s)

all cases are implemented by the following MATLAB functions, from notes.pdf

o

oP

oP

oP

dford.m - digital filter order determination

Usage: [N,Ad,wd]

= dford (wp,ws,Ap,As, type,match) ;

dfdes.m - digital filter design with bilinear transformation

Usage: [B,A,w0]

= dfdes (N, Ad, wd, type, shape, coeffs);




12SP - Ch.11

IIR filter design — bilinear transformation

One of the simplest and effective methods of designing IIR digital filters
with prescribed magnitude response specifications is the bilinear transfor-
mation method.

Instead of designing the digital filter directly, the method maps the dig-
ital filter into a fictitious equivalent analog filter, which can be designed
by one of the well-developed analog filter design methods, such as Butter-
worth, Chebyshev, or elliptic filter designs. The designed analog filter is
then mapped back into the desired digital filter by the blinear transforma-
tion. The procedure is illustrated below.

bilinear
digital filter transformation .| analog filter
specifications Q = g(w) specifications
| i< ( analog filter
v bilinear Kdes1gn method
digital filter transformation analog filter

H(2) = fo) Hq(s)




The mapping between the s and = planes is carried out by a transformation
of the form:

s= 1)

The mapping f(z) is chosen so that it maps the left-hand s-plane into the
inside of the unit circle on the z-plane, as shown below.

Ims
A s-plane
z-plane s=p )W  esYQ
I
[
0 0 »Res
unit left-hand %
circle s-plane

Because all analog filter design methods give rise to stable and causal trans-
fer functions H,(s), this property guarantees that the designed digital filter
H{(z) will also be stable and causal.



In addition, the transformation must map the s-plane frequency axis,
that 1s, the imaginary axis s = j7{2 onto the z-plane frequency axis, that is,
the periphery of the unit circle = = €“, so that,

i =f(e¥) = 2 = g(w)

The overall design method can be summarized as follows: Starting with
given magnitude response specifications for the digital filter, the specifica-
tions are transformed by the appropriate prewarping transformation, {2 =
g(w), into the specifications of an equivalent analog filter.

Using an analog filter design technique, the equivalent analog filter, say
H,(s). is designed. Using the bilinear transformation, s = f(z), the analog
filter is mapped back into the desired digital filter H(z), by defining:

s=f(z)

The corresponding frequency responses also map in a similar fashion:




There are several types of bilinear transformations, depending on the desired
type filter to be designed, lowpass, highpass, bandpass, bandstop. They are
defined as follows:

, 1 — 21

(lowpass) s= f(z) = g
' , 1+ 271
(highpass) s = f(z)= i
L 9—1 ., -2

(bandpass) s=f(z)= l 21c~ h__QF -

, 1 — 272
(bandstop) s=f(z) = Dy

where. ¢ = cos(wy). with wy the center of the passband band. Only the first
two are “bilinear” in the variable z, the last two being quadrilinear.

All of the above transformations satisfy the constraint that they map
the left-hand s-plane into the inside of the unit-circle on the z-plane.



the corresponding frequency maps are:

(lowpass) 2 = g(w) = tan (%)
(highpass) (2 = g(w) = — cot (%)
(bandpass) 0 = glw) = ¢ — cosw
S111 W
(bandstop) 0 = g(w) = Sin w
COSW — ¢

Because of the nonlinear relationship between the physical frequency w and
the fictitious analog frequency (2, such transformations are sometimes re-
ferred to as frequency prewarping transformations.
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bandpass, Q= (c - cos(®))/sin(m)

o in units of ©




For example, for the lowpass type, we have
1 — 21
!

The corresponding mapping of frequencies is obtained as follows:

1 —e7dw w2 _ miw/2 sin(w/2)

0= () = A O = (3)
..} f(f— ) 1 _|_ I‘__'f_jw E_?.'_,_,r'fﬂ _|_ t—,!—jw/r‘z’ CU“‘I /) .J] .

R

Or,

(2 =g(w)=tan (i)

o

We also have.,

! Lfz=1 2 —1] _(E=DE+D+E+E -
Reo— —(glg*) — — _ |
e s 2(b+%) 5 +1 Ty )+ 1)
or. 2
2] =1
Res =
EER:

which shows that

Res<0 & |z <1 and Res=0 & |[z|=1



There are two approaches to using these transformations in designing digital
filters:

(a) Given a desired digital filter type, LP, HP, BP, BS, one uses the lowpass
bilinear transformation to map to an analog filter of a similar type, LP,
HP, BP, BS. This approach is used, for example in designing 2nd order
parameter audio equalizer filters.

(b) Given a desired digital filter type. LP, HP, BP, BS. one uses the cor-
responding LP, HP, BP, BS transformation type to map to a lowpass
analog prototype filter, which is the transformed back to tha appropri-
ate digital filter type. Because it is easier to design lowpass analog
prototypes, this approach is preferred in designing high-order digital
filters.



approach (a):

approach (b):

LP digital
HP digital
BP digital
BS digital

s |5 |s |=

LP analog
HP analog
BP analog

BS analog

LP digital
HP digital
BP digital
BS digital

2 |z |58 s

LP analog
LP analog
LP analog

LP analog




Next, we apply approach (a) to design notch, peaking, and equalizer filters
with exact specifications of center frequencies and bandwidths, as opposed
to the apptoximate pole/zero designns that we considered earlier.

For narrow-width filters the pole/zero technique is adequate, but it be-
comes cumbersome for wider peak widths, such as those that might be used
in graphic and parametric audio equalizers. The bilinear transformation
method offers precise control over the desired specifications of such filters.



Notch Filters

i 2 |desired digital
IH(w)l notch filter
‘1 e R
3 \ |'/ AB dB
G}; 4+ &m —l-%l lll-q—
Ny
I
|
o, || o,
oL

®
-

notch digital maps to notch analog
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The desired specifications are the sampling rate f,. notch frequency fy. and
bandwidth Af of the notch. or, equivalently, the corresponding digital fre-

quencies:

wWp =

27 fo
Is




Alternatively, we may specify wp and the ()-factor.

wWo Jo

“= 20T Ar

The specifications together with their bilinear analog equivalents are shown
above. The bandwidth Aw 1s usually defined to be the 3-dB width, that is,

the full width at half maximum of the magnitude squared response. More
generally. it can be defined to be the full width at a level G%, or in decibels:

Ap = =10 lU%uijzB) = Gg = 10~A8/20

The bandwidth Aw 1s defined as the difference Aw = ws — wq of the left
and right bandwidth frequencies wy and wy that are solutions of the equation,
|H(w)|? = G%. For the 3-dB width. we have the condition | H (w)|* = 1/2.



Given the desired specifications, {wy, Aw, G5}, the design procedure be-
gins with the following expression for the equivalent analog filter, which
has a notch at frequency (2 = (2:

s? 4+ 2
2 5 L ()2
s¢ + as + {7

Hy(s) =

We will see below that the filter parameters {«. {2} can be calculated from
the given specifications by the following design equations:

W 1 -G Aw
2 = tan (TD) 4= \/78{1 + pn) tan (—1‘; )

Gp

==




Then, using the bilinear transformation s = (1 — 271) /(1 4 271), the filter

H,(s) 1s transformed into the digital filter /(=) as follows:

1—21\° 5
s4+05 (1+:—1) 4%

SE—FCI:S—F.(?g_ 1_:_1 2 1_:_1 9
1 .1) T\ %

(1— 2124 22(1 4 271)2
(1—z2124a(l—21)(1+21)+ Q&(l 4+ 2—1)2

1— 22
1 -2 0} 271 4 22
( 1+ 22 (1+Q§) -

1—|—J’2§—|—u)19( 1 — 22 )#_1+(1+Q§_“)~_2

H(z) = Hy(s) =




The coefficients of the digital filter can be simplified considerably by recog-
nizing that o already has a factor (1 + (22) in its definition. Thus, we may
replace it by

a=(1+ !23),{7’

where

V1= GE Aw
= B tan (—)

Gr

Using some trigonometry, we can write also

1— ()2 11— tan?(wo/2)
1+ 22 1+ tan%(wo/2)

— COS W

Canceling several common factors of (1 + 22), we can write the transfer
function H (=) in the simplified form:

() — 1 1 —2coswgz"1 + 272
(2) = L+6/) (mwﬂ) . (1 —_.3) .

1+5 )" 1+




This is the final design. It expresses the filter coefficients in terms of the
design specifications {wp, Aw. G%}. Note that the numerator has a notch at
the desired frequency w, and its conjugate —wy, because it factors into:

1 —2coswpz t+27%= (1 — 70 1) (1 — e7Iwo T

The first one, 2 = tan(wg/2), is simply the bilinear transformation of wy
and makes the analog filter’s notch correspond to the digital filter’s notch.
The equation for o can be derived as follows. Setting s = j{2 in H,(s), we
obtain the frequency and magnitude responses:

— 0?4+ (2
— 22 + jaf2 + 22

(22 — %)
(22 — 2)2 + 02022

,(£2) = = |H(02)|* =

It is evident from these expressions that H,((2) has a notch at {2 = ().



The analog bandwidth frequencies {21 and (2, are solutions of the equation
|H,(2)]? = G%. that is.

(522 o !?DE)E 12

(22— @2 +a22 B

Eliminating the denominator and rearranging terms, we can write it as the
quartic equation in (2

12

G
0t — (293 + ﬁaﬁ) P2+ =0
—

[t may be thought of as a quadratic equation in the variable z = (22, that is,

G2,

2 ( 2
22— (202 4 B
( e:)

&2) r+ 025 =0

Let 71 = 22 and z9 = (22 be its two solutions. Rather than solving it, we
use the properties that the sum and product of the two solutions are related
to the first and second coefficients of the quadratic by:



From the second equation, we obtain:

2182 = (2}

which states that (2 i1s the geometric mean of the left and right bandwidth
frequencies. Using this result, we obtain:

2
O} + 0 =210 + —B 0’
1 - G%
which allows us to solve for the analog bandwidth:
G*
AP = (29— Q) =07+ 25 =200y = —L 07
]_ - CTB
or,
AQ =0y — = ——=_a|  (Ap-dB width)

V1—-G%

Solving for a, we have:




Note that for the 3-dB case, G = 1/2, the parameter « is equal to the 3-dB
bandwidth:

a = Af? (analog 3-dB width)

Finally, we must relate the analog bandwidth A(? to the physical bandwidth
Aw = w9 — wy. Using the bilinear transformations 2y = tan(w; /2), {25 =
tan(wq/2), and some trigonometry, we find:

Aw We — W1 tan(wy/2) — tan(wy/2)
tan | — | = tan = ' : .
2 2 1 + tan(wsy/2) tan(wy /2)

=0 AR
10 122

where we used (2, (2, = Q.g . Solving for Af2, we have:

A2 =(1+ QDQ) tan (T)

Thus, finally,

(o =

gl .

-
B B

1,!]_—6:2 1;-"]_—(?2 A\
B AR = B (14022 tan (j )




To summarize, we have the exact design equations,

1 —2coswgzt + 272

1
H(z) =
(2) (1+ﬁ) {_9 (m&awg

3

1

G

)

| V1= G?
15 B tan (

2

L-5Y
L+3

where Aw is the GG g-level bandwith. In the 3-dB width case, we have

[ = tan (

Aw
2

>

IH(w)l’

desired digital
notch filter




Peaking filters

peaking digital maps to peaking analog

A 2 |desired digital A 2 equivalent analog
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Peaking or resonator filters can be designed in a similar fashion. The de-

sired specifications are shown above. The design procedure starts with the
second-order analog resonator filter:

s
H,(s) =
“ s2 +as + (22

which has frequency and magnitude responses:

H,(2) = — : H, ()" = -
= anrm = MO = am

Note that H,(f2) has unity gain at the peak frequencies 2 = (2.




The bandwidth frequencies (2; and 2 will satisfy the bandwidth condition:

2 (22
02 = e — 2
Ha(02)] (22 — 22)2 + 2022 b
It can be written as the quartic:
4 b2 L LGB 9\ 4
"B

which is similar to the notch case. Its two solutions 22 and (22 satisfy the

conditions: )
y T

{:)1? —|— QE = QLDQ + C_Tl’l
B

2705 = (23

from which we obtain 242 = (23 and

VI—G% Cr
AQ =y — Q) = a = |a= AR

Gp - /1-G%




The analog filter parameters {«, ()} are given by equations similar to the
notch case:

" (; ﬂtu‘
(zotan( 2“)._ (v = o (1 + (2{2,) .:111( 5 )

V11— G?

The digital filter is obtained by the bilinear transformation:

(XS

H(z :Ha S) = — )
( ) (H) s? 4+ as + "(2[2} s§=

l—z_1
1—|—z_1



The final design equations are:

T \1+p )7 1+ 8

H() = (2 .
oo\0+8/ o(f&ﬂ)v4+(£ii)“ﬂ

where 7 1s now given by,

| G Aw
g = b = tan ( 5 )
v 1—G3 Z

Note that the numerator vanishes at = = *£1, that is, at DC and the Nyquist
frequency. For the 3-dB widths, we have G5 = 1/2, and the parameters [
1s the same as in the notch filter, that is,

[ Aw
.D) = tan (T)



Parametric Equalizer Filters

AH(o) cut

® ®
| > -

0 ®, T
Equalization (EQ) i1s a very common operation in audio systems—analog,

digital, home, car, public, or studio recording systems.

Graphic equalizers are the more common type, in which the audio band
is divided into a fixed number of frequency bands, and the amount of equal-
ization in each band 1s controlled by a bandpass filter whose gain can be
varied up and down. The center frequencies of the bands and the filter 3-dB
widths are fixed, and the user can vary only the overall gain in each band.



A more flexible equalizer type is the parametric equalizer, in which all three
filter parameters—gain, center frequency, and bandwidth—can be varied.
Cascading four or five such filters together can cover the entire audio band
and achieve almost any desired equalization effect.

The filter design problem is to determine the filter’s transfer function
in terms of the specification parameters: {Gy, G, G, wp, Aw}. We define
the parametric equalizer filter as a linear combination of the notching and
peaking filters discussed above:

H(z) = GoHuoen(2) + GH oy (%)

At wp the gain 1s &, because the notch filter vanishes and the peak filter has
unity gain. Similarly, at DC and the Nyquist frequency, the gain is equal to
the reference (7, because the notch is unity and the peak vanishes. When,
G = G, we have H(z) = Gy, that is, no equalization.



Substituting the expressions for the peaking and notch filters, we obtain:

Gog+ G 5 Gy cos wy . 4 Gog—Gf 9
H(-) = 1+ “\1+5 ) 1+ )
._ oo (890 g (120

The parameter J 1s now given by,

72 (G2 Aw
g =. B 0 tan
G? — G’QB 2

Note that the quantity under the square root is always positive for either a
boost or a cut.




The design equations can be justified as follows. Starting with the same
linear combination of the analog versions of the notching and peaking filters,
we obtain the analog version of f(z):

}"n(sg + !23) + Gas
5?2 + as + (23

Ha(*f') = GoHyoren(s) + C;Hpeak(f‘) =

Then. the bandwidth condition | H,(£2)|?> = G% can be stated as:

O GR(02% = 28)? + GPa(2?

H,(2)|?
Ha(£2)] (022 — (22)2 + a2()2

= G4

[t can be cast as the quartic equation:

G2 — G2,

ot — (2523 R
(S\"B - TD

a-?) P4+ 25=0

Proceeding as before and using the geometric-mean property (212 = (22,
we find the relationship between the parameter o and the analog bandwidth
A = !?g — ..Qli

G% - G? G2 — G? Aw |
o= \/H A = \/'5(‘20 (1 + 23) tan (T) = (1+22)8
T - TB T — TB

=



The design of notch, peaking, and EQ filters was based on approach (a) in
which we map the same type of digital filter to a similar type of analog filter
using the LP version of the bilinear transformation.

LP digital —>  LP analog
HP digital 2  HP analog
approach (a): "
BP digital ——  BP analog
BS digital = BS analog
. LP
LP digital —— LP analog
HP digital HoLp analog
approach (b): -
BP digital ——  LP analog
BS digital 2 Lp analog

The design of higher-order filters i1s more conveniently based on approach
(b) in which we always map the digital filter—regardless of its type—to a
lowpass analog filter, but using the appropriate bilinear transformation type.



2 4 desired digital 2 A equivalent analog
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‘ desired digital equivalent analog
2 2
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Higher-Order Filters

The second-order designs are adequate in some applications such as audio
equalization, but are too limited when we need filters with very sharp cutoff
specifications. Higher-order filters can achieve such sharp cutoffs, but at the
price of increasing the filter complexity, that is, the filter order.

The figure below shows the specifications of a typical lowpass filter and
its analog equivalent obtained by the bilinear transformation. The specifi-
cation parameters are the four numbers { Jfoasss Jstops Apass. - qmp} that 1s, the
passband and stopband frequencies and the desired passband and stopband
attenuations in dB.

2 A desired digital 2 A equivalent analog
IH(f) lowpass filter H, (L) lc:-wpass filter
1 _LA 1
1/ [1+E|§asa} — T pass T — paas T
ASIDP A“DP
/(1485,,) =1 ,‘a__l | .{ ™1 : l
0 f pass f.:;lnp f;‘fz 0 QP355 Q‘*IUP
e e e e

passband stopband passband stopband



Within the passband range 0 < f < fi, the filter’s attenuation is required
to be less than Ay, decibels. And. within the stopband fgo, < f < fs/2.
it 1s required to be greater than Ay, decibels. Thus, the quantity Ay, 1S
the maximum attenuation that can be tolerated in the passband and Ay, the
minimum attenuation that must be achieved in the stopband.

The filter can be made into a better lowpass filter in three ways: (1)
decreasing Ap,s 0O that the passband becomes flatter, (2) increasing Agop SO
that the stopband becomes deeper. and (3) moving fep ClOSer to fyass SO that
the transition region between passband and stopband becomes narrower.
Thus. by appropriate choice of the specification parameters, the filter can be
made as close to an ideal lowpass filter as desired.



Assuming the filter’s magnitude response squared |H (f)|? is normalized to
unity at DC, we can express the specification requirements as the following
conditions on the filter’s attenuation response in dB, defined as

A(f) = =101logy [H(f)|?

E Apass 9 for 0 E f é f pass
fl(f) E flstop 3 fDI‘ fstop E f E f5/2

— < IH(f)F <1, for 0 < f < fpass

<—J~ fDI‘ fstopgfgfs/z



where {pass, Sstop } are defined in terms of { Apuss, Asiop } as follows:

1 — .
H(fpass) ’ — ﬁ p— 1{] Apassflﬂ )
~ pass
1
H(fS[Gp) 2 = ﬁ — 1{]_Asmpf1[} ‘
—stop

The quantities {E‘pass. E‘Smp} control the depths of the passband and stopband.
They can be written in the equivalent forms:

Epass = \/1[:]*%355"}1{] —1 Apass = 10 luglﬂ(l + Egassj
Sstop — \/1[::]‘45[0!”;1'] —1 Astop = 10 logo(1 + "531013)




The specifications of the equivalent analog filter are { ¢ Zpass {2stops Apasss Astop 2
or, {( 2pass {2stop s Epass E‘Smp}. where the analog frequencies are obtained by
prewarping the digital frequencies:

“pas: Wst
*Q]Jass = tan ( pa“) . Qstcup — tan ( ;Op)

2 2
where
L . Qﬁfpass o L Qﬂfstap
“pass — ? “stop —
/s fs

The parameters {.-'_:pass. Emp} are useful in the design of Butterworth, Cheby-
shev, and elliptic filters.

To complete the design for H(z). we need to first design the equivalent
analog lowpass filter H,(s). and substitute into it the lowpass bilinear trans-
formation,

H(z) = Hy(s) and  H(w) = H,(2)

5:'1_’_—_1— Q:tan(’_ﬁ‘?')



Analog Lowpass Butterworth Filters

Analog lowpass Butterworth filters are characterized by just two parame-
ters: the filter order NV and the 3-dB normalization frequency (2. Their
magnitude response 1s simply:

2 _ 1

. O\2N
(2

and the corresponding attenuation in decibels:

- ’ !? 24““-
2 =10logy |1+ (Qa)

[H ()

A(2) = —10logy, |H(£2)

a2 A equivalent analog
|H ()] lowpass filter
1 ¥
_— TApass T
Asmp
N I I Q
} Ll
0 szuss slstup
N E— e

passband stopband



Note that, as N increases for fixed (/, the filter becomes a better lowpass
filter. At 2 = (2. the magnitude response is |H({2)|? = 1/2. or, 3-dB
attenuation A((2y) = 3 dB. The two filter parameters { N, {5} can be deter-
mined from the given specifications {Qpasg, (2si0p s Apass Asmp} by requiring

the conditions:

A(I?pasg) — 1[) ]'D‘g"].ﬂ

*4(_'-(?'510]3) — 1[) ]'DE!']_[}

1+

1+

{ ?pass
2

{ ?Stﬁp
{2

) 2N
) 2N

To solve them for NV and (5. we rewrite them in the form:

= Apass = 10logyq(1 + £hey,)

— Asmp = 10 1051_‘;10(1 + 2

( kaass

2

( { 2s;ta::q::

2

2N
) = 104/10 1 = &2

2N
) = 104/ 1 = 2

— “pass

“stop

sto )
p

design equations




Taking square roots and dividing, we get an equation for /N :

Ouop )" _ Ewop [ 10Aee/10 — ]
Dpass 10Aps/10 1

pass
with exact solution:

Vo In(Est0p/ Epass) _ In(e)
T I (u0p/ Ppass) In(w)

where we defined the stopband to passband ratios:

G _ 10401 O
T Epass 104ps/10 _ 17

Izpass

Since N must be an integer, we choose it to be the next integer above Negac,
that 1s,

N = F\rexact—‘



Because NV is slightly increased from its exact value, the resulting filter will
be slightly better than required. But, because N is different from Negae, We
can no longer satisfy simultaneously both of the exact equations. So we
choose to satisty the first one exactly. This determines (2 as follows:

0 -Qpass tQpass
240 — 7 12N — _1/N
(104rs/10 — 1)1/2N 0

With these values of NV and (2, the stopband specification is more than sat-
1sfied, that is, the actual stopband attenuation will be now A({2g0p) > Agiop-
In summary, given {Qpass. {25t0p; Apass Asmp}. we solve for the parameters,
N and 25. We note also that we may rewrite | (£2)|? in terms of the pass-
band parameters,

H@)P = g = :

0 2N 0 2N
) (D)
LQU P f 213355




An alternative design can be obtained by matching the stopband specifica-
tion exactly, resulting in a slightly better passband, that is, A({p) = Asiop
and A(2us) < Apass- The 3-dB frequency (2, is now computed by,

() — ‘-(2SID]J o hQstop
=0 \1/2N — _1/N
(l[];’jisto];afl{j _ l) / E‘atl/)p

In this case, | H({2)|? can be written in terms of the stopband parameters:

(!?Stop) 2N
‘ 1 (2
[H(2)|" = =

2N 2N
[ st (=" g
stop '-(28[0[3 () stop




The analog Butterworth transfer function H (s) can be constructed from the
knowledge of { N, (2} by the method of spectral factorization, as described
below. Using s = j{2 and noting that (H(£2))" = H*(—(2), we may write
the magnitude response in terms of the variable s'

1 1
H(s)H"(—s) = pe

ON 9N
|+ (i) 1+(—1)N( ° )
752 | {2

. we have

1
D(s)

Setting H(s) =

N\ 2N

2

Because the right-hand side is a polynomial of degree 2N in s, D(s) will
be a polynomial of degree N. There exist 2V different polynomials D(s) of
degree IV satisfying this equation.

TThe notation H* (—s) denotes complex conjugation of the filter coefficients and replacement of s by —s, for
example, H* (—s) = > al(—s)"if H(s) = > a,s™.



But, among them, there is a unique one that has all its zems in the left-hand

s-plane. This is the one we want, because then, H(s) = 1/D(s). will be
xtab]e and causal. To find this D(s)., we first determme all the 2N roots of
of the above equation and then choose those that lie in the left-hand s-plane.
The 2N solutions of,

are given by,

s; = (% 0, =

l




si= Qe ;= o(N=1+20) |, i=12,.. N, . 2N

24

The index 7z 1s chosen such that the first NV of the s; lie in the left-hand s-
plane, that is, m/2 < #; < 3mw/2fori = 1,2,..., N. Because |s;| = (2,
all of the zeros lie on a circle of radius (2, called the Butterworth circle and
shown below.

/N
\"//"

s, s-plane

Butterworth
circle

[t 1s seen from the figure that the s; can be paired in complex conjugate
pairs; that is, sy = 57, sy_1 = 55, and so on.



If N iseven,say N = 2/, then there are exactly /' conjugate pairs, namely,
{s;.si}, i =1,2,..., K. In this case, D(s) will factor into second-order
sections as follows:

D(s) = Di(s)Da(s) - -+ Dk (s)

Di(s):(l—i)(l—i;>. i=1.2. K
S; 5'_3-

On the other hand, if N is odd, say N = 2K + 1, there will be /A conjugate
pairs and one additional zero that cannot be paired and must necessarily be
real-valued. That zero must lie in the left-hand s-plane and on the Butter-
worth circle; thus, it must be the point s = —(J. The polynomial )(s)
factors now as:

where

D(s) = Do(s)D1(s)Da(s) - -~ Di(s), where  Dy(s) = (1 ’ %n)



The remaining factors [);(s) are the same as in both cases. They can be
rewritten as factors with real coefficients as follows. Inserting s; = Qe
we havefor: =1,2,.... K:

Dis)= (12 )(1-2)=1-9 0, s”
()= (1-= - —??m +%

Inserting these factors into the Butterworth analog transfer function H(s) =
1/D(s), we can express it as a cascade of second-order sections:

H(s) = Ho(s)Hy(s)Hs(s) - Hg(s) gfﬂeﬁﬁﬁr}?:toe?

where,

(1 if N =2K

Ho(s) = < - if N=2K+1
1+
\ 2
1 ,
H;(s) = 5 o =1,2,..., K
S
!m 2 6= (N —1+2)



Example:
The Butterworth polynomials J(s) of orders 1-7 and unity 3-dB normal-
1ization frequency (25 = 1 are shown in the table below. For other values of
(2y. s must be replaced by s/ in each table entry.

The coefficients of s of the second-order sections are the cosine factors,
—2 cos f;. For example, in the case N = 7, we have A’ = 3 and the three
6’s are calculated from:

m 87 107 127
= (6420 = —, = =1
VRS VR VR ¥

—2cost; = 0.4450, 1.2470, 1.8019

0;

The corresponding Butterworth filters H(s) of orders 1-7 are obtained as
the inverses of the table entries.



Butterworth polynomials

N | K 01,00,...,0k D(s)

110 (1+s)

2 |1 3T” (1 +1.4142s + s2)

3 1 %T (1+8)(1+5+52)

4 | 2 % % (1 +0.7654s + s2) (1 + 1.8478s + 52)

5 | 2 %T % (1+5)(1+0.6180s + s2) (1 + 1.6180s + 52)

6 | 3 FE (E ]:; (1 +0.51765s + 52) (1 + 1.4142s + s2) (1 + 1.9319s + s2)

7 | 3 Eij ]E:’T lff (1 +5)(1 +0.44508 + s2) (1 + 1.2470s + s%) (1 + 1.8019s + s2)




Example:
Determine the 2%V possible Nth degree Butterworth polynomials D(s). for
the cases NV = 2 and N = 3. Take (/) = 1.

Solution:
For N = 2, we must find all second-degree polynomials that satisfy, D(s)D*(—s) =
1+ (—1)2s*. They are:

D(s) =1+ 2s+ s D¥(—s)=1— 25+ &
D(s)=1—+v2s+ s _ D*(—s)=1+2s+ s’
D(s) =1+ js’ D*(—s) =1— js’
D(s)=1—js° D¥*(—s) =1+ js?

Only the first one has all of its zeros in the left-hand s-plane.



Similarly, for N = 3, the 2 = 23 = & different third-degree polynomials

D(s) are:

D(s) = (14 s)(1+ s+ s
D(s)=(145)(1 —s+s%)
D(s) = (1+s)(1 — s2e¥™/3)
D(s) = (1 4+ s)(1 — s?e27/3)
D(s) = (1= s)(1 = s*e7/?)
D(s) = (1 —s)(1 = s*¥7%)
D(s)=(1—=s)(1+s +3?)
D(s)=(1—-s)(1—s+ s?)
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They all satisfy, D(s)D*(—s) = 1 + (—1)3s°, but, only the first one has its

zeros in the left-hand s-plane.



Digital Lowpass Filters

Under the lowpass bilinear transformation, the lowpass analog filter will b
transformed into a lowpass digital filter. Each analog 2nd-order section wi
be transformed into a 2nd-order section of the digital filter, as follows:

. | G142
o 1 _9° 0. + 52 C l+agzt +apne?
— 2 COS (/7; 9

o 22

_1 =—1
5= l—|—;r_I

If NV i1s odd. then there 1s also a first-order section:

, 1 Go(l + 21
Ho(z) = 5 7 ~—1)
j [ — + ap1 2
) -

The overall transfer function of the designed lowpass digital filter will be:
H(z) = Ho(z)Hi(z)Hao(z)--- Hg(2)

If N 1s even, we may set Hy(z) = 1.



where the filter coefficients (;, a;1, a;o are easily found to be:

(_"l' !?3
1220 cos b, + 2,2
22 = 1)
{1.1- p— -
P T 220 cos b, + 22
1 4 282 cos O; + 23
;2 = _
2T 2202 cos 0 + (2
for,.e =1.2..... K. and for the first-order section.
% -1
T oo+ T o1

The 3-dB frequency fp in Hz of the digital filter is related to the analog
Butterworth parameter (Z; by,

e

{2y = tan (:;') = tan (I.ffﬂ) = Jo= E arctan( ()

—
s i




The filter sections have zeros at z = —1, that is, at the Nyquist frequency,
w = m. Setting {2 = tan(w/2), the magnitude response of the designed
digital filter can be explessed simply as follows:
1 1
H(w)P = | Ha(2)[* = =
14 (2/52) + (tan(w/2) /Q{])

Note also that each second-order section has unity gain at zero frequency,
f=0,w=0,orz = 1. Indeed, setting z = 1, we obtain the following
conditions, which can be verified from the above definitions,

4G 2G

=1 and —_—
1+ a;1 + agp 1 + apq

=1



In summary, the design steps for a lowpass digital filter with given specifi-
cations {fp'l?-; f’ilop pass: < '-;top} are.

[. Calculate the digital frequencies {wpass.wmop} and the corresponding
prewarped versions {Ppm J;top}

(]

. Calculate the order N and 3-dB frequency (2, of the equivalent low-
pass analog Butterworth filter based on the transformed specifications

{f ?passe p“ﬂﬂ]} ’1pa%ﬂ. < Rtnp}

3. The transfer function of the desired lowpass digital filter 1s then ob-
tained 1n the above cascaded form of first- and second-order sections.

2 desired digital 2 equivalent analog
IH(f)] 4 lowpass filter IH ,(£2)] 4 lowpass filter
¥ i3
| — |
1“[1+E|§as‘.} — —_\' TApaﬁs T —- _\ TApass T
Asmp Asmp
L/(14egep) =1 :“‘*———l | -{ -1 : l
0 f pass Jﬁ;lnp fs‘a 0 Qpass Qamp

| e e
passband stopband passband stopband



Example:

Using the bilinear transformation and a lowpass analog Butterworth proto-
type. design a lowpass digital filter operating at a rate of 20 kHz and having
passband extending to 4 kHz with maximum passband attenuation of 0.5
dB, and stopband starting at 5 kHz with a minimum stopband attenuation of
[0 dB. Then, redesign it such that its magnitude response satisfies

1> |H(f)|* > 0.98

in its passband, and
H(f)]* <0.02

in its stopband.

Solution:
The digital frequencies in radians per sample are:
2m 2m-4 2m 2w -5
':J"'.[JE[SS — - fpass — ‘I_l . — []—1:"'1_.. wStD]J — : fS[Gp = : o [}_Sﬂ'
[s 20 1, 20

and their prewarped versions:

“pas IG5 Wst
(2pass = tan ( fﬁ) = 0.7265,  (2yop = tan ( ?Gp) —1



With the given values, Ap,s = 0.5 dB and Ag,, = 10 dB, we calculate the
parameters {<pass. Sstop -

Foass = V/ 104ms/10 _ 1 = 1/100:5/10 _ | = ().3493
caop = V 10As0/10 — 1 = /1010/10 _ ] = 3

Then, the exact N and its rounded-up value are,

v In(e)  In(Esop/Epass) _ In(3/0.3493)
T In(w)  In(Qu0p/2pass)  In(1/0.7265)

=673 = N=T7T

Thus. there is one first-order section Hy(z) and three second-order sections.
Next we calculate (/5 and its corresponding value in Hz:

pass  0.7265

=75 = = (.8443
"= N T (0.3403) 177
Js 20 o
fo = = arctan(§2y) = = arctan(0.8443) = 4.4640 kHz

T ' m



The Butterworth angles 61, o, H5 are calculated from,

0; = (\—1+2ﬂ: 642, =123

\ 14(

and the calculated SOS coefficients are then found to be:

1 (;3 (i1 ;9

0 04578 —0.0844

1 0.3413 —0.2749 0.6402
2 0.2578 —0.2076 0.2386
3 0.2204 —0.1775 0.0592

resulting in the transfer function:

H(z) = Ho(2)Hy(2)Hy(2)Hs(2)

0.4578(1 + =71 0.3413(1 + ==1)?
1 -0.084421 1 —-0.2749271 4 0.640222
0.2578(1 + =~1)2 0.2204(1 4 =71)?

" 1—-020762"1 0238622 1—0.17752=1 + 0.0592>2



The left graph of the figure below shows the magnitude response squared,

|[H(f)|%. The brick-wall specifications and the 3-dB line intersecting the
response at f = fp are shown on the graph.

|H(f

)|* = 5%
1+ (tan(mf/ fs)/20) 2

1

B 1+ (ta.u(ﬁf/?(]);f[},g443)14

The passband attenuation in absolute units is 107%%/1 = (.89125 and the

stopband attenuation 1071/10 —

IH(f)12

1.1

1.0

Lowpass, N=7

0.89

0.8F

0.7F

0.6}

0.5f-===----—-----4-1

0.4}F
0.3F
0.2F
0.1F

0.0

10

0.1. Note that the actual stopband at-

tenuation at f = fyop = D kHz is slightly better than required. that is,
A fuop) = 10.68 dB.

1.1
1.0}
0.89F
0.8f
0.7F
0.8f

0.4F
0.3F
0.2f
01

Lowpass, N=13

.E:EE....... P ...BE\
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The second filter has more stringent specifications. The desired passband

attenuation is Apye = —101og;(0.98) = 0.0877 dB. and the stopband at-
tenuation Agep = —101log;((0.02) = 16.9397 dB. With these values, we

find the design parameters {<pass. Sstop } = {0.1429, 7} and:
Nexact = 1218, N =13, 2y =0.8439, fy = 4.4622 kHz

The digital filter will have one first-order and six second-order sections. The
SOS coefficients were calculated with the MATLAB function Ihbutt.m of
[2SP Appendix.

i G ai a0
0 04577 —0.0847

1 0.3717 —0.3006 0.7876
2 0.3082 —0.2492 0.4820
3 0.2666 —0.2156 0.2821
1 02393 —0.1935 0.1508

(45 4
]
D
]
s
—

2221 —=0.1796 0.0679
6 0.2125 —0.1718 0.0219

[ts magnitude response is shown in the right graph of the above figure. As is

always the case, making the specifications more stringent results in higher
order V.



Digital Highpass Filters

0) desired digital - equivalent analog
IH(f)l 4 highpass filter |H,(€)] 4 lowpass filter
¥ ¥
17 - | —
L 1+E[2}ass) T T TAPEH al i — N TAPHSS. T
Asmp Asmp
1/( 1+E5?10p] — l — .-Lf S !x____ i E,_l
0 faop  Jpass 2 0 Qpass utop
> > e e
stopband passband passband stopband

The mapping 1s now carried out by the highpass version of the bilinear trans-
formation,

1+ 2 . W 2
T (Y)W
-zt 2 fs
[t maps the point = = —1 to s = 0, or equivalently, the center of the pass-

band of the highpass filter at w = 7 to the center of the passband of the
lowpass filter at {2 = 0.



The prewarped versions of the passband and stopband frequencies are com-

puted as follows:
Whpass 1T J pas:
Opes = cot (22 = cor (T

. { Wstop _ mf stop
) — —

We should have used (2,ss = — cot(wpass/2). However, as far as the de-
termination of the parameters N and (J; is concerned. it does not matter
whether we use positive or negative signs because we are working only with
the magnitude response of the analog filter, which is even as a function of
(2. The analog lowpass Butterwirth parameters NV, {2 are now determined
from the values of {2pass. (stop- Apass- Astop }-




Under the highpass bilinear transformation, each SOS of the analog filter
will be transformed into an SOS of the digital filter, as follows,

1 Gi(1—=71)?
Hi(z) = 2 — 1 | -1 | —2
| _ S +a; 127+ apnz

() 2{]

If NV 1s odd. then there 1s also a first-order section given by

1 Go(l — 27 1)
Hy(z) = = '
{]( ) ]_—I—{I-[}l:ﬁ_l

Q{] — i+ —1

E{ E{

The overall transfer function of the highpass digital filter will be
H(z) = Ho(z)H1(z)Ha(z) - - - Hx(z)

If Vis even, we may set Hy(z) = 1.



where the filter coefficients (+;, a;1, a;o are easily found to be

LQE
1 —2825cosb; + {2
Q(Qg — 1)
a1 — — : :
: 1 — 202 cos 0; + 2,2
1+ 202 cosO; + 23
;9 — ) :
2T 1 220 cos b; + 22
for,2 = 1.2,.... I, and for the first-order section,
() (25— 1
G‘{] = 0 ag — — 0

0+ 1 0+ 1



The 3-dB frequency fj of the designed filter may be calculated from:

2y = cot (u.an) = cot (Tffﬂ) = Jfo= f: arctan ({1 )
2 s m 0

and the magnitude response from:

1
1+ (cot(w/2) /Pg)

H (w)]* =

Note the similarities and differences between the highpass and lowpass
cases: The coefficients (<; and a;o are the same, but a;; has reverse Sign
Also, the numerator of the SOS is now (1 — z=1)% instead of (1 + z71)2, re-
sulting in a zero at z = 1 or w = 0. These Lhanges are easily understood by
noting that the lowpass bilinear transformation becomes the highpass one
given by under the substitution z — —=z.



Example: Using the bilinear transformation and a lowpass analog Butter-
worth prototype. design a highpass digital filter operating at a rate of 20 kHz
and having passband starting at 5 kHz with maximum passband attenuation
of 0.5 dB. and stopband ending at 4 kHz with a minimum stopband attenu-
ation of 10 dB. Then, redesign it such that its magnitude response satisfies

1> [H(f)]*>0.98

in the passband, and
|H(f)|* <0.02

in the stopband.

Solution:
The digital frequencies and their prewarped versions are:
2 o 5 y
W . _ _-ﬂ_fpass _ 21N ) _ [}_5?{' p - C(Jt (Wpass) o l
’ fs 20 fpass = OV \THT ) T
27 f. Q- 4 = Wsto
W — i stop — = — [} ,__I:"'" QStOp — (:L}t P — J_?}ITG'—.I:
stop f ,)[) Sl 2
i 2

The dB attenuations { Apass, Asiop} = {0.5, 10} correspond to {<pass, Estop } =
{0.3493, 3}. Then, we solve for N,

In(sstop/Epass)  In(3/0.3493)

Nexact = = ~673 = N
T I (2aop/ Ppass)  In(1.3764/1)

I
-1




Thus, there is one first-order section Hy(z) and three second-order sections.
The calculated parameter (2, 1S now,

(2 ; 1
O — pass - pas;f; _ —1.1621
D (10410 _ )N T U (0.3493)177 |
The SOS coefficients are found to be

3 (—;3 {fe',-ﬂ {1-1'2
0 0.5375 —0.0750
1 04709 —0.2445 0.6393
2 0.3554 —0.1845 0.2372
3 0.3039 —0.1577 0.0577

resulting in the transfer function:

H(z) = Ho(2)H1(z)Ha(2)H3(z2)
0.5375(1 — =~1) 0.4709(1 — z=1)2
1 —0.07502~1 '1-—(1244d:—1-+LL6393:—2
0.3554(1 — 271)? [}3009(1 —1)2
'1-—(1184d:—1-+[12372:—9' 1 —0.157721 -+[1[5




As 1n previous lowpass example, the second filter has passband and stop-
band attenuations: Ap = —101og;((0.98) = 0.0877 dB and Ay,p =
—101log3(0.02) = 16.9897 dB. With these values, we find the design pa-
rameters {€pus, Sxopf = 10.1429, 7} and:

Nexaer = 1218, N =13, (5 =1.1615, fo=4.5253 kHz

The coefficients of the first- and second-order sections are:

J G; i1 ;9

0 0.5374 —0.0747

1 05131 —0.2655 0.7870
2 04252 —0.2200 04807
3 0.3677 —0.1903 0.2806
4 0.3300 —0.1708 0.1493
5 0.3062 —0.1584 0.0663
6 0.2930 —0.1516 0.0203

The above design steps are implemented in the I12SP function, lhbutt.m.

The magnitude responses of the two designs are shown below.
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Digital Bandpass Filters

equivalent analog

desired digital
2 2
|H(/) 4 bandpass filter |Ha(€2)] 4 lowpass filter
A pass _L
1/(1+e2 )—l: _.1. N Apass
pass I. / * | T
A stop I.-'II 4 stop A stop
Ly \ed |
(1+€d0p) - a X | _{ .l L 9_1_
0 Jsa ] pa b/ pb Jsb _,f ;-"‘ 2 0 Elpass E1st|::np
] | e e e
stopband  passband stopband passband stopband

The specifications are the quantities { fpa. fubs fsa- fsbs Apass: Asiop }- defining
the frequency bands:

— the passband range f,. < f < fo.
— the left stopband 0 < f < f,,. and
— the right stopband fg, < f < f./2.

The stopband attenuations were assumed to be equal in the two stopbands:
if not, we may design the filter based on the maximum of the two.



The bandpass version of the bilinear transformation and the corresponding
frequency mapping are in this case:
1 —2cz7t 4272 C— CcOSw 2r f

5 . () = _ : W =
1 — 2= SIn w fs

S

A new parameter c has been introduced. Note that ¢ = 1 recovers the low-
pass case, and ¢ = —1 the highpass one. The parameter ¢ 1s required to be
¢| < 1in order to map the left-hand s-plane into the inside of the unit circle
in the z-plane.

Therefore, we may set ¢ = cosw,. for some value of w,.. The center of
the analog passband (2 = 0 corresponds to cosw = ¢ = cosw,, O, W = W,.
Therefore, w, may be thought of as the “center” frequency of the bandpass
filter (although it need not be exactly at the center of the passband).

The given bandpass specifications, must be mapped onto the specifica-
tions of the equivalent analog lowpass filter, {{2pass. siop. Apass: Astop -




This can be done as follows. We require that the passband |f,,, f,] of the
digital filter be mapped onto the entire passband [—!2]35,55. Q.pass] of the analog
filter. This requires that:

—Lpass = —
S111 Ldpa
C — COS Wy,
(pass = ——
SN W,

where wy,, = 27 fa/ fs and wy, = 27 f,/ fs. By adding them. we solve for
c. Then, inserting the computed value of ¢ into one or the other we find
{25ass- The resulting solution is:

_ sin(wWpa + Wph) 0.
C=— ) " fpass —
SIN Wpq + SN Wp

SI Wph

Note that for w,,. wy, in the interval [0, ], the above expression for ¢ implies
c| < 1, as required for stability.




Next, we compute the two numbers:

!?.sa — 3 st —

SIN Wg SN Wyp

where w,, = 27 f../fs and wgy, = 27 fy/ fs. Ideally, the stopband of the
digital filter should map exactly onto the stopband of the analog filter so
that we should have 24, = (20, and {25, = —(20p. But this is impossible
because c has already been determined.

Because the Butterworth magnitude response is a monotonically de-
creasing function of {2, it is enough to choose the smallest of the two stop-
bands defined above. Thus, we define:

2a|)

With the computed values of 2, and (Z,,. we proceed to compute the
Butterworth parameters N and (2, and the corresponding analog filter SOS
sections as before.

Qual,

(2top = miIN (



Because s 1s quadratic in z, the substitution of s into these SOSs will give
rise to fourth-order sections in z:

1
HE(Z) — 2
I — 2—
Q{j £ 9 !l% g—1=2cz—14,—2

C;E(J_ — 3_2)2

where, for: =1.2..... i
T 2
T =20 cosb; + 0
de((2ycos; — 1) 2(2¢% +1 — (22)
T Z 20 cos by + 2T 1220 cos b + 2,2
de($2pcosb; + 1) 1 + 202y cos 0; + 22
;3 = — . 4 =

1 — 202 cos f; + 24° 1 — 20 cosb; + 202



If NV 1s odd. then there 1s also a first-order section in s which becomes a
second-order section in z:

1 701 — .-’.;'_2)
Hy(z) = 5 - 1 (A—l —2
L2 + ag1z " + apaz
!?D S:l—ﬂcz_1—|—z_2
1—z—2
where
e J?{] 2c 1 — LQ-[}
70 = . gy = — . gy =
YT . 1+ 2 P10

The overall transfer function of the bandpass digital filter will be given as
the cascade of fourth-order sections with the possibility of one SOS:

H(z) = Hy(z)H(2)Hy(z) - -- Hg(2)

The order of the digital filter is 2N, because s is quadratic in z. The filter
sections have zeros at z = £1, thatis, w =0 and w = 7.



The left and right 3-dB frequencies can be calculated from the equations:

Cc — COS Wy

; = :F!?{]
S11 W

They can be solved by writing coswy and sinwy in terms of tan(wg/2),
solving the resulting quadratic equation, and picking the positive solutions:

i**‘ T foa PRH+1—c2— o
tan (ﬂ) — tan ™ fo _ \/ h+1—c 2o
2 fs 1 —I—C

W 022 L1 —¢210)
tan (ﬂ) = tan ™ Job = \/ 0~ c+
2 s [+c

i



Example:

Using the bilinear transtormation and a lowpass analog Butterworth proto-
type, design a bandpass digital filter operating at a rate of 20 kHz and having
left and right passband frequencies of 2 and 4 kHz, and left and right stop-
band frequencies of 1.5 and 4.5 kHz. The maximum passband attenuation 1s
required to be 0.5 dB, and the minimum stopband attenuation 10 dB. Then,
redesign it such that its magnitude response satisfies,

1> |H(f)*>0.98

in the passband, and
H(f)|> <0.02

in the stopbands.

Solution:
The digital passband frequencies are:
20 fon 21+ 2 27 204
Wpa = Iy = —— =021, wy = Jpi = —— =0d4dnr
fe 20 fe 20

Then, we calculate ¢ and (2p,:

¢ — COS Wpp

SIN(Wpa + Wpb)

= (0.3249

C =

= 0.6180, { 2pass =

SN W

S W, = S11 Wy, pb



With the stopband digital frequencies:

Qﬂ_fsa 2m - 1.5 Qﬂ_fsb 2m - 4.5
“Wsa fS 2(] / """’Sb fS 2[}
we calculate:
C — COSW . C — COSWgp _
Doy = ——— 250 06013, Qg = ——— = — 04674
SI1 W, SIN Wy,

and (yop = min (|2, |2s|) = 0.4674. The analog filter with the specifi-
cations { 2pass, siops Apass, Astop } has parameters {&pass, Estop } = {0.3493, 3}
and:

Newet =5.92, N =6, (2 =0.3872



The left-right 3-dB frequencies are calculated to be: fy, = 1.8689 kHz,
for, = 4.2206 kHz. The coefficients of the three fourth-order sections of the
digital filter are as followed, and can be computed by the [2SP MATLAB
function bpsbutt.m:

i G (131 32 ;3 li4

1 01110 —-2.0142 2.3906 —1.6473 0.7032
2 0.0883 —1.8551 1.9017 —1.0577 0.3549
3 0.0790 —1.7897 1.7009 —-0.8154 0.2118

The magnitude response can be calculated from:

1 1
[H(w)” = F =

2N B N
|+ (2 14 C — COS W
(5 (2o sIinw




H(f)2

The magnitude response is shown in the left graph of the figure below. The
passband specifications are met exactly by design. Because the maximum

stopband frequency was on the right, {250, =

f 2545

-

the right stopband spec-

ification 1s met stringently. The left stopband specification is more than

required.
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For the second set of specifications, we have Ay, = —1010g(0.98) =
0.0877 dB, and Agep = —1010g;((0.02) = 16.9897 dB and {pass. Esiop} =
{0.1429, 7}. The design has the same ¢, (2. and (2. Which lead to the
Butterworth parameters:

Nexact = 10.71, N =11, (2 = 0.3878

The left and right 3-dB frequencies are now fy, = 1.8677 kHz, fo, = 4.2228
kHz. The digital filter coefficients of the second- and fourth-order sections
are:

i G (41 42 i3 (li4

0 0.2794 —0.8907 0.4411

1 0.1193 —=2.0690 2.5596 —1.8526 0.8249
2 0.1021 —1.9492 21915 —1.4083 0.5624
3 0.0907 —1.8694 1.9460 —1.1122 0.3874
4 0.0834 —1.818 1.7900 —0.9239 0.2762
5 0.0794 —1.7904 1.7033 —0.8193 0.2144

Again, the right stopband specification 1s more stringently met than the
left one. The “center” frequency of the passband is the same for both fil-
ters and can be obtained by inverting cosw,. = ¢. In Hz, we have f. =
fsarccos(c)/(2m) = 2.8793 kHz. The magnitude response is normalized to
unity at f..



Digital Bandstop Filters

7 desired digital S u? equivalent analog
IH(f)] 4 bandstop filter |H,(€2)] 4 lowpass filter
1 | _"C}_pass paf.s_ - ] - i
[1+Eaass) - N —+— T —+— —- __\ —+—Apass T
'. amp .' A stop
|I II|
. ;' l |
1 1+Eszlup] =T m p-f B! sI'-!-
0 f pa f;a f;b fpb f;"‘ 2 0 Qpass; stop
e e ————— =
passhand  stopband passband passband stopband

The specifications are the quantities {fpa b Jsas fsby Apass: - gmp} defining
the frequency bands:

— the stop range fo, < f < fa.
— the left passband 0 < f < f,,. and
— the right passband f,;, < f < f,/2

where we assumed that the passaband attenuations are the same in the two
passbands, if not, we can work with the smallest of the two.



The bandstop version of the bilinear transformation and the corresponding
frequency mapping are,
1 — 272 S1n W 2m f

— . () = : w =
1 —2c2—1 4+ 272 CoOsSw — ¢ s

S

The design steps are summarized as follows. First, we compute the digital
frequencies in radians per sample:

L Qﬁfpa . Qﬁfpb _ i—ﬁfsa Qﬂfsb

Wpa — f s Wpb — f Wsa — s Wsp —
s s

fs Is
Then, we calculate ¢ and (2,5 by requiring:

SI1 Wpq S11 Whpp

{ ?pass —

_Qpass: : o



which may be solved as follows:

_ Hill(“"pa + u-f’pb) 1) o sin Wpb
€= : “pass —

SIN Wy, + SIN Wy,

COS Wpp — €

Next, we compute the two possible stopbands:

SIN Weg SIN Wy}
!?Sﬂ. — . st —
COSW, — C COS Wy, — C
and define:
Qgop = 1'11111( Qs st|)

Then, use the analog specifications {( 2pass» {2stop, Apass, Asmp} to compute the
Butterworth parameters { N, (2, }.



And finally, transform the analog filter sections into fourth-order sections,

Hi(i) = ! 2

J_ — 27 COSs 9 0 9 »
0 &0 lg= 1—=z
1—2cz_1+z_2

Gi(l = 2cz7t 4+ 27%)?

1 + a1z -1 + apz —2 + a;3% —3 + AijgZ —

where the coefficients are givenforz =1,2,..., K
23
(;_‘;’ — 0 9
1 — 202 cosb; + (2
def2o(cosb; — () 2(2c2022 + (22 — 1)
;1 =— ;9 =
LT 1= 202 cosb; + 20 2T 1= 20y cosb; + 2
def(cosb; + £2) 14+ 202y cosb; - Q&
i3 = — - | Ajq =

1 — 20 cosl; + 2° 1 =20y cosb; + 22



If NV 1s odd. we also have a second-order section 1n z:

1 Go(1 —2cz7t 4+ 272)
Ho(z) = S = —1 2
1+ 1 +agrz=t + apgez
J?{] s— 1—z—2
T 1—2ez—14:-2
where
O 20 -2
Gr{] = agr — — apy — —




Note that each section has zeros at 1 — 2¢z—1 + 272 = 0, which correspond
to the angles w = Fw,., where cos w. = ¢. The 3-dB frequencies at the edges
of the passbands can be determined by solving for the positive solutions of

the equations:

SN W
— :t !?D

Ccoswp — €
which give:

1 7 I .,-2 1 2 .
tan ( .[la) = tan Tf{]ﬂ’ — \/J' + '()D(J' C ) ]-
2 fs (1 + 0)

7 ' 2(1 — (2
tml( _nb) o (00 _ VI+2(1—2)+1
h fs !?{]fl—FC)

-

S

i

-

€.

i



Example:

Using the bilinear transformation and a lowpass analog Butterworth pro-
totype, design a bandstop digital filter operating at a rate of 20 kHz and
having left and right passband frequencies of 1.5 and 4.5 kHz, and left and
right stopband frequencies of 2 and 4 kHz. The maximum passband atten-
uation is required to be 0.5 dB, and the minimum stopband attenuation 10

dB. Then, redesign it such that its magnitude response satisfies
1> |H(f)* >0.98

in the passbands, and
H(f)]* <0.02

in the stopband.

Solution: The digital passband and stopband frequencies are:

o 27 fpa _ o7 - 1.5 015wy, — 27 fpb _ 2 - 4.5
e fs 20 " b fs 20
2 feq 27 -2 27 f 24
Weq = / = —— = 0.2m, Wep = fob = — = 04dr
fs 20) fs 20



Then, we calculate ¢ and (2;:

Sin(Wypg + Wop o SI1 W ;
c=—=" _._p) = (.6597, Qpass = |[——— = 1.9626
SIN Wi, + SIN W COS Wy}, — €
Then, we calculate the stopband frequencies:
SIN Weg o SIN Wap, o
sq = = 3.9361, g = = —2.7121
COS Weq — C COS Wy — C

and define (yop = min(|2s].[2s|) = 2.7121. The analog filter parame-
ters are:
Nexact = 6.65, N =7, 2y = 2.2808

The left-right 3-dB frequencies are calculated to be f,, = 1.6198 kHz, fq, =
4.2503 kHz. The coefficients of the SOS and the three fourth-order sections
of the digital filter are:

~

i 7 (141 @42 143 A4

0 0.6952 —-0.9172  0.3904

0.7208 —2.0876  2.4192 —-1.7164 0.7187
0.5751 —1.9322  1.9301 —-1.1026 0.3712
0.5045 —1.8570  1.6932 —0.8053 0.2029

Lo b



For the second set of specifications, we have Ay = —101log((0.98) =
0.0877 dB. and Agop = —1010g5(0.02) = 16.9897 dB. The design has the
same ¢, {Zpass. and (20p. Which lead to the Butterworth parameters:

Nexact = 12.03, N =13, (2 = 2.2795

The left-right 3-dB frequencies are now f,, = 1.6194 kHz, fy, = 4.2512
kHz. The filter coefficients of the second- and fourth-order sections are:

[ 7 ;1 ;2 ;3 QA4

0 0.6951 —0.9171  0.3902

1 0.7703 —=2.1401  2.5850 —1.9251 0.8371
2 0.6651 —=2.0280  2.2319 —1.4820 0.5862
3 05914 —1.9495  1.9847 —1.1717 0.4105
4 05408 —1.8956  1.8148 —0.9584 0.2897
H 05078 —1.8604  1.7041 —0.8194 0.2110
6 04892 —1.8406  1.6415 —-0.7410 0.1666



IH(f)12

For both designs, the “center” notch frequency of the stopband can be ob-
tained by inverting cosw. = ¢. In Hz, we have f. = f,arccos(c)/(2m) =

2.7069 kHz. The magnitude responses of the designed filters are shown
below.
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Chebyshev Filter Design
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Chebyshev filters come in two varieties. Type | has equiripple passband
and monotonic stopband, and type 2, also known as inverse Chebyshev, has
equiripple stopband and monotonic passband.

[t is the equiripple property that 1s responsible for the narrower tran-
sition widths of these filters. For example, for the type | case, because the

passband response is allowed to go slightly up near the edge of the passband,
it can fall off more steeply.



The specifications of the filter are {( 2pass , §2stop, Apass, Asmp} and are obtained
by prewarping the desired digital filter specifications using the appropriate
bilinear transformation (lowpass, highpass, bandpass. or bandstop). Two
important design parameters are the quantities {pass. Ssiop }- The magnitude
response squared of an Nth order Chebyshev filter is expressible in terms
of these parameters as follows. For the type 1 case:

5 1

0
1 + .":Tgassc':ir (f} )

{pass

[ H($2)

and, for the type 2 case:

ey (%)
N (
H(Q)P = ¢

C_r? “(25‘013 4 ~2
"N 9 = stop

where C'y () 1s the Chebyshev polynomial of degree NV, defined by,

Vv cos(Ncos™Yx)), if |z| <1
On(r) = { cosh(N cosh™'(z)), if || > 1




Chebyshev polynomials can be understood by defining the angle 6 = cos™! z,

so that z = cosf and C'y(x) = cos(NF).
When |z| > 1, the equation = = cos ¢ requires ¢ to be imaginary, say
0 = j/3. so that = = cos(j3) = cosh(3) and

Cn(x) = cos(NO) = cos(Nj3) = cosh(N3F) = cosh(N cosh™! )
Using trigonometric identities, it can be shown that cos(/N#) is expressible
as an Nth order polynomial in cos . that is,

N

cos(NH) = Z ¢;(cosf)’

i=0

The ¢; are the coefficients of the Chebyshev polynomials:

N
C’mflﬁ) — Z C.ii.‘i
i=0
For example, we have C'{(x) = cos# = x, and
cos(20) = 2cos® ) — 1 o(z) =222 — 1
cos(36) =4 cos® § — 3cosl =  Cy(z) =42° — 3z

cos(40) = 8cos?§ —8cos?  + 1 Cy(x) =82 =822 + 1



Next, we consider the details of the type | case. The argument of C'y(x)
18 & = (2/(25,. Therefore, within the passband range 0 < 2 < (2, we
have 0 < = < 1. which makes C'y () oscillatory and results in the passband
ripples.

Within the passband. the magnitude response remains bounded be-
tween the values | and 1/(1 + Eﬁass). At the edge of the passband, cor-
respondincr to x = 2/ = 1. we have Cy(2) = 1. giving the value
|H (O2pass)|* = 1/(1 + 234)- The value at 2 = 0 depends on N. Because
C'n(0) equals zero for odd N and unity for even /N, we have:

|H(0)]* =1 (odd N). |H(0)]* = (even N)

L+ ﬂ]%ﬂ’i’i



The order /N can be determined by imposing the stopband specification, that

s, [H(Q)]? < 1/(1+2,,)

for {2 > (2.p. Because of the monotonicity of

the stc}pband, this condition is equivalent to the stopband edge condition:

1

|H (240p)|* = ———
o 1"’“5‘10]3

and
1 1

1+ s cosh? ('\ cosh™H(¢ 2si0p/ 2]35,55)) l+¢ gmp

which gives:
where we used the stopband to passband ratios:

e — Sstop _ 104010 — 1 w = Lgmp
Tz 104ms/10 — 17 7 Qs

= pass

Thus, solving for N, we find:

- cosh e B 1“(’8 + m)

-1 w)=¢e



The final value of NV is obtained by rounding Neer Up to the next integer,
that 1s, N = D‘}mcﬂ. As in the Butterworth case, increasing /N slightly
from 1ts exact value 1esults in a slightly better stopband than required, that
NH(Quop) 2 < 1/(1+ 2,).

The 3-dB fr equency can be calculated by requiring |H (2)|? =
which can be solved to give:

1 1
— - = cosh(N cosh™ (2 Dnass ) ) =
14 ¢2 CQ 23dB/LQPass) 2 ( | ( 3dB/ o )) = pass

= pass
m 1 1
tan ( ?dB) = (lqp = *Q]Jass cosh (? C‘US]I_I(P ))

s ~pass

1/2.

Or,




The transfer function H(s) of the Chebyshev filter can be constructed by
determining the left-hand-plane poles and pairing them in conjugate pairs
to form second-order sections. These conjugate pairs are {s,, s;}, where,

s; = (passsinh a cos; + j s cosha sinf;, =1.2..., K
where N = 2K or N = 2K + 1. In the odd case, there is also a real pole at
S0 = —{2pass SINh a

where the parameter a is the solution of
1

Cpass

smh(Na) =

that 1s,

1 1 1
= ~ sinh™! (Epass) = N In

The angles #; are the same as the Butterworth angles,

m

T AN

The 2nd quadrant values of these angles place the s; in the left-hand s-plane.

0, (N—1+2), i=12....K



The second-order sections are then:

1 - IEIE'I2

(1_;@) (1_%) 52 — (2Res;)s +
S; S,

For convenience, we define the parameters:

Hi(.fa’) =

.Efil2

Then, we may express the second-order sections in the form:

QF + 12,7
Hy(s) = 0+ —s. i=12....K
| s? — 20 cosb; s + 2 + £2;

The first-order factor Hy(s) is defined by

;

1
1+ Egass
2

L s+ 1

if Viseven. N = 2K

if Visodd, N =2K +1




If NV is odd, all filter sections are normalized to unity gain at DC. If N is
even, the overall gainis 1/(1 + fﬁass)” 2, Tt follows that the overall transfer
function will be the cascade:

H(s) = Ho(s)Hi(s)Ha(s) - - - Hi (s)

Once the analog transfer function is constructed, each second-order section
may be transformed into a digital second-order section by the appropriate
bilinear transformation. For example, applying the lowpass version of the
bilinear transformation s = (1 —271) /(1 4+ 271), we find the digital transfer
function:

H(z) = Ho(z)H1(z)Ha(z) - - - Hi (%)

where H;(z) will have the form:

B (;E(J_ —l— -’.;'_1)2
14 agzl4ape?’

Hi(:ﬁ)



and the coefficients are computed by

08 + 027

G =
1 — 242 cos 0; + Q& 102
2(98 + 2,2 —1)
(lj1] = -
L 1= 20 cosf, + 22+ 07
1 4+ 202y cos b; + 22 + 2
;9 =

1 — 20 cosb; + 22 + ;2
The first-order factor 1s given by

i

1 . .
if NV 1s even

1+ 22
Ho(2) = ¢ s
Goll+=7) if V is odd
\ l+a.01:_1
where
I 7/ -1
T S N
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12SP - Ch.10

FIR Digital Filter Design

A designed desired ideal
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The FIR filter design problem is the problem of determining the filter length
N and the finite impulse response coefficient vector, h = [hq, hq, .. ., hv_1l,
of an FIR filter that meets prescribed frequency response specifications.



The two main advantages of FIR filters are their linear phase property and
their guaranteed stability because of the absence of poles. Their potential
disadvantage is that the requirement of sharp filter specifications can lead to
long filter lengths /N, consequently increasing their computational cost.

The main advantages of IR filters are their low computational cost
and their efficient implementation in cascade of second-order sections. Their
main disadvantage is the potential for instabilities introduced when the quan-
tization of the coefficients pushes the poles outside the unit circle. For IIR
filters, linear phase cannot be achieved exactly over the entire Nyquist inter-
val, but it can be achieved approximately over the relevant passband of the
filter, for example, using Bessel filter designs.



Window Method

The window method is one of the simplest methods of designing FIR digital
filters. It 1s well suited for designing filters with simple frequency response
shapes, such as ideal lowpass filters. Some typical filter shapes that can be
designed are shown below. For arbitrary shapes, a variant of the method,
known as frequency sampling method. may be used.



Window Method
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A given desired ideal frequency response. say D(w). being periodic in w
with period 27, need only be specified over one complete Nyquist interval
—m < w < m. The corresponding impulse response, say d(k). is related to
D(w) by the DTFT and inverse DTFT relationships:

= : T - dw
D(w) = Z d(ﬁ:)e_:‘wk = d(k):/ D(LU)E’JUJ;G?—F

k=—c0

In general, the impulse response d(k) will be double-sided and infinite. For
many ideal filter shapes, the w-integration can be done in closed form. For
example, for the lowpass filter shown above, the quantity D(w) is defined
over the Nyquist interval by

D(w) = 1, if  |w| < w.
10 0 we<|w <

Therefore, the inverse DTFT formula gives,

" o dw we dw
d(k) = / D(w)e?“F —— = / 1. pdwk §
— 27 o 2

[ ijk ]wc ijck . E—jwck

orik| T 2mik

— W



which simplifies into,

sin(w.k
(lowpass filter) d(k) = Lﬂ) —o0 < k < o0
For computational purposes, the case £/ = 0 may be handled separately.
Taking the limit & — 0, we have,

d(0) = 2«
(0) = —

Similarly, we find the impulse responses of the ideal highpass. bandpass.
and bandstop filters, defined over —oo < k < oo,

(highpass filter) d(k)=0(k) = ———

(bandpass filter) d(k) =

(bandstop filter) d(k) = 0(k) —



Note that for the same values of the cutoff frequencies w,., w,, wy, the
lowpass/highpass and bandpass/bandstop filters are complementary. that 1s,
their impulse responses add up to a unit impulse o(%) and their frequency
responses add up to unity (as can also be seen by inspecting the above figure,

de(;IL) + de(JlL) = d(ﬂl) = DLpfu.;') + DHP(LG) =1
dpp(k) +dpg(k) =0(k) < Dpp(w)+ Dpg(w) =1

See [2SP Ch.10 for some audio graphic equalizer designs that exploit this
property.



The ideal differentiator filter has frequency response, D(w) = jw, defined
over the Nyquist interval. The ideal Hilbert transformer response can be
expressed compactly as, D(w) = —jsign(w), where sign(w) is the signum
function which 1s equal to £1 depending on the algebraic sign of its argu-
ment. The w-integrations result in the 1deal impulse responses:

cos(mk)  sin(mk)
k mhk?

(Hilbert transformer) d(k) = 1 - T’:fﬂi‘)

Both filters have d(0) = 0, as can be verified by carefully taking the limit
k— 0.

Both impulse responses d(k) are real-valued and odd (antisymmetric)
functions of £. By contrast, the LP/HP/BP/BS ideal filters all have impulse
responses that are real and even (symmetric) in £. We will refer to the two
classes of filters of as the symmetric and antisymmetric classes.

In the frequency domain, the symmetric types are characterized by a
frequency response D(w) which is real and even in w: the antisymmetric
ones have [(w) which is imaginary and odd in w. One of the main con-
sequences of these frequency properties is the linear phase property of the
window designs.

(differentiator) d(k) =




To summarize, the designs fall into two classes, both of which result in
linear phase filters.

(a) Symmetric

d(k)isreal & evenink| << | D(w)isreal & odd inw

(b) Antisymmetric

d(k)isreal & oddin k| <& |D(w)isimaginary & odd in w




Rectangular Window

The window method consists of truncating, or rectangularly windowing, the
double-sided d(k) to a finite length. For example, we may keep only the
(2M + 1) coefficients:

o2’

, T o dw
fqufimméﬂi— _M<k<M

—

Because the coefficients are taken symmetrically for positive and negative
k’s, the total number of coefficients will be odd, thatis, N = 2M + 1 (even
values of N are also possible, but not discussed here).

The resulting N -dimensional coefficient vector is the FIR impulse re-
sponse approximating the infinite ideal response:

d=1[d_p.....d_y.do.dy.. ... dy]

The time origin £ = 0 1s at the middle dj of this vector. To make the filter
causal we may shift the time origin to the left of the vector and re-index the
entries accordingly:

h=d= [h[}. c s h-M’—l« h.M’. hﬂf.,.l. C e s th’]

where we defined hu — d_M’, h.l — d—M’—l—l- C e es h-;.,f = (f{]. C s h-QM’ — dﬂ,{.



Thus, the vectors d and h are the same, with the understanding that d’s
origin is in its middle and h’s at its left. The definition of h may be thought
of as time-delaying the double-sided sequence d(k), —M < k < M, by M
time units to make it causal:

hin) =d(n— M), n=~01,..., N -1

The operations of windowing and delaying are shown below. To summarize,
the steps of the rectangular window method are simply:

[. Pick an odd length N =2M + 1. and let M = (N —1)/2.
2. Calculate the N ideal coefficients d(%), and

3. Make them causal by the delay operation.

rectangular A d(k) A h(n) rectangular
window & L Y 4~ window
| 5 w(n)

54321012345 ~ k 210123456789 " n

PAIPNE.




For example, the length- /N approximation to the ideal lowpass filter is,

oy — ain gy = S = M) | o
() = d(n = M) = — g =0 M N =

where we may calculate separately, h(M) = d(0) = w,. /.

Example:

Determine the length-11, rectangularly windowed impulse response that ap-
proximates (a) an ideal lowpass filter of cutoff frequency w. = 7/4, (b) the
ideal differentiator filter, and (c¢) the 1deal Hilbert transformer filter.

Solution:

With N = 11, we have M = (N — 1)/2 = 5. For the lowpass filter, we

evaluate,

sin(mk/4)
k "

and obtain the numerical values:

V2 V2 1 V2

1
1077 6r 2n 27 4 2n ) 2n 6m 0 10w

d(k) = for =5 <k <5

h=d=



For the differentiator filter, the second term. sin(mk)/7k?2, vanishes for all
values k # 0. Therefore, we find:

1111 11 1
h=d=|-, —~, —, —. 1,0, =1, =, ——, =, ——
[5 1732 2’371 5}

And. for the Hilbert transformer:

‘) ) ) 9 ) )
h=d=|-— 0 —5—.0.—. 0. —, [}—
5:1 J’T T T 3n _Iln

Note that the lowpass filter’s impulse response is symmetric about its mid-
dle, whereas the differentiator’s and Hilbert transformer’s are antisymmet-
ric. Note also that because of the presence of the factor, 1 — cos(7k), every
other entry of the Hilbert transformer vanishes.



In the frequency domain, the FIR approximation to D(w) is equivalent to
truncating the DTFT Fourier series expansion to the finite sum:

M
D(w) = E d(k)eIwk
k=—M
Replacing » = ¢/“, we may also write it as the double-sided z-transform:
M
D(z) = § d(k)z"
k=—M

The final length-V causal filter will have transfer function:

and frequency response:

M
H(w) = e *MD(w) =M " d(k)e 7
k=—M




Example:
To illustrate the definition of H(z), consider a case with N = 7 and M =
(N —1)/2 = 3. Let the FIR filter weights be

d = [d_g. d_s.d_1.dy. dy. d>s, dg]
with truncated z-transform:

D(z)=d_32* +d_92* +d_1z+do+dyz +doz? + d3z™?

Delaying it by M = 3, we get the causal transfer function:

|
}

{

H(z) = 272D(z)

z (d—333 +d_92® +d_1z4+do+dizt +dozT? + dg:-;_?’)

= d_g —|— d_gf.;_l —|— d_l--’.;'_2 —|— dgﬁ_g —|— d13_4 —|— dgﬁ_E —I— dgfi_ﬁ

—ho+hiz P+ hor 2+ har 3 L hyr L her ™ + hgz 6
where we defined h(n) =d(n —3),n=0,1,2,3.4,5,0.



The linear phase property of the window design is a direct consequence of
the delaying operation and the fact that the truncated ﬁ(w) has the same
symmetry/antisymmetry properties as D(w).

Thus, in the symmetric case, ﬁ(w) will be real and even in w. It follows
that the designed FIR filter will have linear phase, arising essentially from
the delay factor e, More precisely, we may write the real factor ﬁ(w}
in terms of its positive magnitude and its sign:

.

D(w) = sign(D(w)) | D(w)| = e | D(w)|

where (w) = |1 — sign (ﬁ(w})] /2, which is zero or one depending on the
sign of D(w). It follows that H(w) will be:

H(w) = e M D(w) = e 3M+imB(«) | D)(w)|
Therefore, its magnitude and phase responses will be:
|H(w)| =|D(w)|, argH(w)=—-wM +73(w)

making the phase response piece-wise linear in w with 180° jumps at those
w where D(w) changes sign.



For the antisymmetric case, ﬁ( w) will be pure imaginary, that is. of the form
D(w) = jA(w). with real-valued A(w). The factor j may be made into a
phase by writing it as j = ¢/™2. Thus, we have.

H(w)= e_jwMﬁde) — E_jwMejﬂﬂ}l(w) — ¢ IWM im/2 gjma(w)

A(w)]

where a(w) = [1 — sign(}l(_w))}/l which gives for the magnitude and
phase responses:

[H(w)| =

T
Aw)|, argH(w) = —wM + 5 + ma(w)



How good is the rectangular window design? How well does the truncated
D(w) represent the desired response D(w)? In other words., how good is the
approximation D(w) ~ D(w)?

Intuitively one would expect that ﬁ(_w) — D(w) as N increases. This
is true for any w which is a point of continuity of IJ(w). but it fails at points
of discontinuity, such as at the transition edges from passband to stopband.
Around these edges one encounters the celebrated Gibbs phenomenon of
Fourier series, which causes the approximation to be bad regardless of how
large N is.

To 1llustrate the nature of the approximation ﬁ(w} ~ [(w), we con-
sider the design of an ideal lowpass filter of cutoff frequency w,. = 0.3,
approximated by a rectangularly windowed response of length N = 41 and
then by another one of length N = 121.



For the case N = 41, we have M = (N —1)/2 = 20. The designed impulse
response is given by,

sin ([].3?.*(-?1. — 2[]))

.-11'-('?1-) — dfﬂ. — 2“) — "*f'?? _ 7[})

n=20,1,....40

and in particular, h(20) = d(0) = w./m = 0.3. The second design has
N =121 and M = 60. Its impulse response is, with 2(60) = d(0) = 0.3:
sin(0.37(n — 60))

h(n) =d(n—60) = ( 50) . n=20,1,....120
w(n —

The two impulse responses are plotted below. Note that the portion of the
second response extending =20 samples around the central peak at n = 60
coincides numerically with the first response. The corresponding magnitude
responses are also shown below. They were computed by evaluating,
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The length-N impulse response h(n) may be thought of formally as the
rectangularly windowed double-sided sequence defined by

hin) =w(n)d(n — M)|, —00 < n < 0o

where w(n) 1s the length-N rectangular window. In the frequency domain,
this translates to the convolution of the corresponding DTFTs,

T _ Y -Ef..df
H(w) = f W(w—we“MD(w") :

i
- 2T

where the ¢ =7 arises from the delay in d(n — M). The DTFT W (w) of
the (causal) rectangular window w(n) 1s, with N = 2M + 1,

2M (M +1)4¢ T, L
W(w) = 2 :E_jwn _1—e (2M+1)je _ M sin(Nw/2)
— 1 —e sin(w/2)

Thus, the designed filter H(w) will be a smeared version of the desired
shape D(w). In particular, for the ideal lowpass case, because D(w’) is
nonzero and unity only over the subinterval —w, < w’ < w,., the frequency
convolution integral becomes:



we . dli.u'f
H@) = [ Wiw—w)es

The ripples in the frequency response H (w) arise from the (integrated) rip-
ples of the rectangular window spectrum W (w). As N increases, we ob-
serve three effects:

L.

]

For w’s that lie well within the passband or stopband (i.e.. points of
continuity), the ripple size decreases as [V increases, resulting in flatter

passband and stopband. For such w, we have

e

D(w) — D(w) as N — oo

. The transition width decreases with increasing /N. Note also that for

any N, the windowed response H(w) is always equal to 0.5 at the cut-
off frequency w = w,. (This 1s a standard property of Fourier series.)

. The largest ripples tend to cluster near the passband-to-stopband dis-

continuity (from both sides) and do not get smaller with V. Instead,
their size remains approximately constant, about 8.9 percent, indepen-
dent of N. Eventually, as N — oo, these ripples get squeezed onto
the discontinuity at w = w,, occupying a set of measure zero. This
behavior is the Gibbs phenomenon.



Explanation of the Gibbs Phenomenon

Let us start with symmetric rectangular window, wy,, —M < k < M The
windowed filter coefficients are,

dp, —M<E<M

dk — W d;g — ) .
0. otherwise

with corresponding approximate and exact frequency responses,

M o0
Dw)= Y dre " =" wpdpe "
k=—M k=—oc
[
D(w) = Z dj eIk
k=—o0

which are related by the convolution property,

D(w) = [ " W(w - o) D(W) ‘;—j



where the DTFT of the symmetric window 1s the undelayed version of the
above causal one, where N = 2M + 1,

sin(Nw/2)

sin(w/2)

For even small values of N, such as N = 7. we have the approximation,

sin(Nw/2)  sin(Nw/2)
sin(w/2) © w/2

W (Lu‘) __

so that the D( ') can be expressed as,

~ T sm(N(w—w')/2
D(w)—f s (N 2) by d

m(w—w')

—T

Next, consider an ideal lowpass filter with cutoff frequency w.,

1 , |LJ.:"| ~ We
D(w)=1<05, w=zxw,
0 |u.s'| = We

It can be expressed either in terms of the Heaviside unit-step function or in
terms of the signum function, as follows,



D(w) = u(w + we) — u(w — we)

r . 1 .
D(w) = 5 sign(w + w,) — 5 sign(w — w,)
which is a consequence of the relationship,
I 1.
u(x) = 5 + 5 sign(x)

For such ideal lowpass filter, the approximation f)(u;) becomes,

~ “e sin(N(w —w')/2
D(\w):/ sin( N ( )/ )dwf

m(w —w')

_wc

Introducing the sine-integral, Si(x), function,

, ¥ smuv
Si(r) = dv
| S

we may express D(w) as the difference, the Si function can be computed

by the built-in function, sinint,
or, by the function, Si(x),
on Sakai Resources.




~ L. 1
D(w) = = Si(N(w + w. /2)——51(\(%,_%);))
In fact, the two Si terms match the two sign terms of
1 |
— —sign(w — w,)

D(w) = 5zaign(:,u + W) 5

figure below demonstrates how the function Si(x) /7 nppmxn’nates the func-
r)/2 even better,

with the Gibbs overshoot arising from the properties of the Si function. The
r)/2, and how Si(Nx/2)/m approximates sign(:

tion SIUII
being a complessed version of Si(x) /7
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The maximum of the S1 function occurs at,

DGimy =M% g o o

dx T

resulting in the maximum value, Si(7)/7 = 0.58949, shown on the left
graph of the figure, whose deviation from the maximum value of the func-
tion sign(x)/2, that is, from 1/2, is the overshoot,

L. 1 : : :
overshoot = — Si(7) — 5= 0.58949 — 0.5 = 0.08949
T
The maximum shown on right graph occurs at Nx/2 = 7, or, © = 27/ N,
and the maximum value is still the same, Si(7)/m = 0.58949.

The Gibbs phenomenon 1s a peculiar property of Fourier series and it
always appears in periodic waveforms that that have discontinuities. Re-
placing the rectangular window with a tapered non-rectangular one tends
to diminish the overshoot. See the historical articles and reviews on Sakai
Resources, as well as the Fourier series practice problem set, s21set9.pdf.
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Hamming Window

To eliminate the 8.9% passband and stopband ripples, we may replace the
rectangular window w(n ) by a non-rectangular one, which tapers off gradu-
ally at its endpoints, thus reducing the ripple effect. The Hamming window
is defined by,

2mn
u{n)2:&54——04ﬁcu5(}£i?1). n=01,.. N-1

In particular, the Hamming windowed impulse response for a length-/N low-
pass filter will be, where N =2M + landn =0,1,.. ., N -1

2mn ) sin(w.(n — M))
N—-1'] x(n—M)

h(n) =w(n)d(n — M) = l[).54 —0.46 c-.os(

As an example, consider the design of a length NV = 81 lowpass filter with
cutoff frequency w,. = 0.3m. The figure below shows the rectangularly and
Hamming windowed impulse responses and the frequency responses. Note
how the Hamming impulse response tapers off to zero more gradually.

The passband/stopband ripples of the rectangular window design are
virtually eliminated from the Hamming window design. Actually, there are
small ripples with maximum overshoot of about 0.2%. but they are not vis-
ible in the scale of the figure. The price for eliminating the ripples is loss of
resolution, which is reflected into a wider transition width.
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Kaiser Window for Filter Design

The rectangular and Hamming window designs are very simple, but do not
provide good control over the filter design specifications. With these win-
dows, the amount of overshoot is always fixed to 8.9% or 0.2% and cannot
be changed to a smaller value if so desired.

A flexible set of specifications is shown in below, in which the designer
can arbitrarily specify the amount of passband and stopband overshoot dpgs.
Ostop- as well as the transition width Af.

A designed desired ideal
filter 1H(f)l filter 1D(f)l
l+6 A58 / _L
pas A
15 ' pass Ky
- “pass T
\ transition A t
1/2 1 < A= P
\ width
A ‘
-\ Y
astﬂp 7 VAN _ S— i
D fpﬂﬁﬁ ﬁ;tﬂp ﬁjz
le—— passband ———» [ stopband >

fe



The passband/stopband frequencies { Jpass; fsmp} are related to the 1deal cut-
off frequency f. and transition width A f by

1
fc — E(_fpass + f’%’[ﬂp) ; —1"f — fstc:p — fpass

Thus, f. 1s chosen to lie exactly in the middle between fya and foop. We
can also write,

1 1
fpass :fc_afjfs fstop:fc+§ﬂf

-

The normalized versions of the frequencies are the digital frequencies:

Qﬂfpass Qﬁfsmp Qﬁfc _1‘ 2 ij
Woass — — = Wstop — - We = \ AW =
‘”‘“ Is o fs s fs

In practice, the passband/stopband overshoots are usually expressed in dB:

1+ 5]3&55

A]JEISS = 20 1£1g10 (ﬁ
— Ypass

) . AS[D[J — _2[} ](JE’ID Cligtgp



A simplified version of the passband equation can be obtained by expanding
it to first order in Opg. gIVING:

40 .
A 1‘;‘; ﬁ - (l) ass — ]_TSW]_B Cl) ass
T O %

which is valid for small values of dp,. Inverting, we also have,

104es/20 — 1 Apygs

Y — ~ N 1 —Asiop/20
Opass —_ 1[]‘4113&'-;{90 n 1 ~ l??}?lg s éstgp — l[} P

Thus, one can pass back and forth between the specification sets:

{fpass- fstop- Apass« Asmp} ~ {fc Jf (spasm 6st0p}



Although 0y, and dgp can be specified independently of each other, it is a
property of all window designs that the final designed filter will have equal
passband and stopband ripples. Therefore, we must design the filter on the
basis of the smaller of the two ripples, that is.

0 = min(Adpass, siop)

The designed filter will have passband and stopband ripple equal to 6. The
value of 0 can also be expressed in dB:

A= -20log;0, 0= 10~A/20

In practice, the design is usually based on the stopband ripple dgp. This
Is so because any reasonably good choices for the passband and stopband
attenuations (e.g2., Aps = 0.1 dB and Agp = 60 dB) will almost always
result into dgop < Opass, and therefore, 0 = dgop. and in dB, A = Agp. Thus,
it 1s useful to think of A as the stopband attenuation.



The main limitation of most windows is that they have a fixed value of 0,
which depends on the particular window shape. Such windows limit the
achievable passband and stopband attenuations {APHSS. Asmp} to only certain
specific values.

For example, the following table shows the attenuations achievable by
the rectangular and Hamming windows, with the values 0 = 0p556 = Os10p =
0.089 and 0 = dpass = Osi0p = 0.002, respectively. The table also shows the
corresponding value of the transition width parameter ), defined below.

Window ) Agop dB Apass dB D
Rectangular 8.9% —21 1.55 0.92
Hamming 0.2% —H4 0.03 3.21
Kaiser variable 0 | —20log,,0 | 17.37180 | (A —7.95)/14.36




The only windows that do not suffer from the above limitation are the Kaiser
window, the Dolph-Chebyshev window, and the Saramiki windows (see
[2SP references). These windows have an adjustable shape parameter that
allows the window to achieve any desired value of ripple 0 or attenuation A.

The Kaiser window is unique in the above class in that it has near-
optimum performance (in the sense of minimizing the sidelobe energy of
the window), as well as having the simplest implementation. It depends
on two parameters: its length N and the shape parameter a. Assuming
odd length N = 2M + 1, the window is defined as in the spectral analysis
context, as follows, forn =0,1,..., N —1,

Iy (a\/l “(n= _.m?/ﬂﬁ)
Ip(a)

(Kaiser window) w(n) =

The numerator can be rewritten in the following form, which is more con-
venient for numerical evaluation:

Io(an/n(2M —n)/M)
f{]f&') ‘

n=01,..., N -1

w(n) =



Like all window functions, the Kaiser window is symmefric about its middle,
n = M, and has the value w(M) = 1 there. At the endpoints, n = 0 and
n = N — 1, it has the value 1/Iy(«) because Ip(0) = 1.

The figure below compares a Hamming window of length N = 51
to the Kaiser windows of the same length and shape parameters a = 7
and o« = 5. For a = 5 the Kaiser and Hamming windows agree closely,
except near their endpoints. For e« = 0 the Kaiser window reduces to the
rectangular one.

Kaiser Window, N=581, a="7 Kaiser Window, N=581, a=58

1.00 1.00

0.75}) 0.75}
E o050} E o050}
3 3

0.251 Kaiser 0.25F Kaiser

0.00 . . . . . . . . . 0.00 . . . . M . . .

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

time samples n time samples n



The window parameters { N, o} are computable in terms of the filter spec-
ifications, namely, the ripple 0 and transition width Af. by the following
design equations developed by Kaiser. The parameter « is calculated from:

( 0.1102(A — 8.7), if A> 50
a={ 0.5842(A —21)%% 4 0.07886(A — 21), if 21 < A < 50
| 0, if A<21

The filter length /V is inversely related to the transition width:

fs . D fs
Af =D & N-1=

/ N —1 Af

where the factor D is computed also in terms of A by

A —T7.95
it A> 21
D={ "1436
0.922. if A <21

For the practical range of A > 50 dB, the formulas simplify into,

A—T7.95 ..
v=0.1102(A — 8.7) , = or A > 50
a=0.1102(A —&8.7) D 1136 (for A > 50 dB)




To summarize, the steps for designing a lowpass filter are as follows. Given
thﬂ SpECIhCHtIUHS {fpflgg fgt@p pagg gtﬂp}

[. Calculate f. and Af. Then, calculate w, = 27 f./ fs.

2

Calculate 0,5 and Oy

d

. Calculate 0 = min(dpyss. Osiop) and A = —201og;, 0 in dB.

4. Calculate o and D from the above design equations.

5. Calculate the filter length N and round it up to the next odd integer,
N =2M +1,andset M = (N —1)/2.

0. Calculate the Kaiser window function, w(n),n =0,1,... . N — 1.

7. Calculate the windowed impulse response, forn =0,1,..., N — 1,

sin (wc(n — f\[))
m(n— M)

h(n)=wn)dn—M)=wn) -

Note that the window parameters { N, o} depend only on the specifications
{A, Af} and not on f.. However, h(n) does depend on f,. The design steps
can be modified easily to design highpass, bandpass and banstop filters. See
[2SP-Ch.10 for the details.



the following functions from 12SP-Appendix implement the
Kaiser window design of lowpass, highpass, bandspass,
differentiator, and Hilbert transformer filters

kbp - bandpass FIR filter design

kdiff - lowpass FIR differentiator design

khilb - lowpass FIR Hilbert trasformer design

klh - lowpass/highpass FIR filter design

kparm - Kaiser window parameters for filter design
kparm2 - Kaiser window parameters for spectral analysis

kwind - Kaiser window




Example:
Using the Kaiser window, design a lowpass digital filter with the following
specifications:

fs =20 kHz

fpass = 4 kHz, fstop = 5 kHz

Apass = 0.1 dB,  Agop = 30 dB

Solution:
First, we calculate dpags and dggop.

1[][}.1/20 1
Opass = 100-1/20 1 |

= 0.0038,  dgop = 1072 = 0.0001
Therefore. 0 = min(0pass. Ostop) = Ostop = 0.0001. which in dB 1s
A = —20logg0 = Agep = 80. The D and o parameters are computed by:

. - e on o = e A-79  _
a=0.1102(A-8.7) = 0.1102(80—8.7) = 7.857, D = 136 5.017

The filter width and ideal cutoff frequency are:
1 }
—1"f — fstnp - fpass = 1 kHz, fc — a(fpass —+ fgmp) = 4.5 kHz

_2nf,
7.

We

= 0.457



The filter length (rounded up to the nearest odd integer) is,

o Df V108 M- Lov_ 1)
N=1+ Af =101.35 = N =103, M = 5(&- —1)=>51
The windowed impulse response will be, forn =0,1, ..., 102:

Ip(7.857y/n(102 — n)/51) sin(0.457(n — 51))

h(n) = w(n)d(n—M) =
() = w(n)d(n—-M) To(7.857) 7(n —51)

with 7(51) = w./m = 0.45. The figure below shows the magnitude response
in dB of A(n), that is, 20 logyy | H (w)]-

The transition width is extending from 4 to 5 kHz and the stopband
specification is defined by the horizontal grid line at —80 dB. The passband
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The figure also shows the corresponding Hamming and rectangularly win-
dowed designs for the same length of N' = 103. They both have a smaller
transition width—the rectangular one even more so, but their stopband at-
tenuations are limited to the standard values of 54 dB and 21 dB. respec-
tively.
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Frequency Sampling Method

The window method 1s very convenient for designing ideally shaped filters,
primarily because the inverse DTFT frequency integral can be carried out in

closed form.

For arbitrarily shaped frequency responses D(w), we may use the fre-
quency sampling method, in which the inverse DTFT integral is replaced by

the approximate sum:

(ﬁﬁ.‘) =

1
N

M
> D(w;)e*, M<k<M
i=—M

where N = 2M + 1. The approximation is essentially an inverse N-point
DFT., with the DFT frequencies w; spanning equally the interval |—m, 7|,

instead of the standard DFT interval [0, 27]:

W; =

271




The rest of the window method may be applied as before, that is, given
an appropriate length-N window w(n), the final designed filter will be the

delayed and windowed version of d(%):

o~

h(n) =w(n)d(n — M), n=0,1...., N —1

We will discuss some examples of the frequency sampling method in I2SP-
Ch.12, where we will design FIR filters for equalizing the slight passband
droop of D/A converters and imperfect analog anti-image postfilters.

Other FIR Design Methods

The Kaiser window method is simple and flexible and can be applied to
a variety of filter design problems. However, it does not always result in
the smallest possible filter length N, which may be required in some very
stringent applications.

The Parks-McClellan method based on the so-called optimum equiripple
Chebyshev approximation generally results in shorter filters. Kaiser has
shown that the filter length can be estimated in such cases by the following
expression that uses the geometric mean of the two ripples. 0, = 1/ 0passOstop-

Df, A, —13 __ i




