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Topics: Multirate signal processing, interpolation, decimation, oversampling,
Interpolation filter design, direct & polyphase realizations, Kaiser designs,
multistage designs, linear & hold interpolators, design examples, interpolator
design with DAC & postfilter equalization, Bessel postfilters, decimation filter
design, sample rate converters, noise-shaping delta-sigma quantizers, oversampled
DSP systems.
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Interpolation and Oversampling

Sampling rate changes are useful in many applications, such as intercon-
necting digital processing systems operating at different rates. Sampling
rate increase is accomplished by interpolation. that is. the process of insert-
ing additional samples between the original low-rate samples.

The inserted. or interpolated. samples are calculated by an FIR digital
filter (ITR filters can also be used, but are less common in practice.)

This is illustrated below for the case of a 4-fold interpolator which in-
creases the sampling rate by a factor of four, that is, f, = 4fs.
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With respect to the fast time scale, the low-rate samples may be thought
of as being separated by three zero samples. The 4-fold rate expander or
upsampler simply nserts three zero samples for every low-rate sample. The
job of the FIR filter is to replace the three zeros by the calculated interpo-
lated values.
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The interpolating filter is sometimes called an oversampling digital filter
because it operates at the fast rate 4f,. However, because only one out of
every four input samples is non-zero, the required filtering operations may
be rearranged in such a way as to operate only on the low-rate samples,
thus, effectively reducing the computational requirements of the filter—by
a factor of four in this case.

This 1s accomplished by replacing the high-rate interpolating FIR filter
by four shorter FIR subfilters, known as polyphase filters, operating at the
low rate f,. The length of each subfilter is one-quarter that of the original
filter. Because each low-rate input sample generates four high-rate interpo-
lated outputs (itself and three others), each of the four low-rate subfilters is
dedicated to computing only one of the four outputs.

Such realization is computationally efficient and lends itself naturally to
parallel multiprocessor hardware implementations in which a different DSP
chip may be used to implement each subfilter.



An interesting application of interpolation is the use of oversampling
digital filters in audio playback systems, such as smartphones, CD, MP3,
or DAT players, where they help to alleviate the need for high-quality ana-
log anti-image postfilters in the playback system. Moreover, each high-rate
sample can be requantized without loss of quality to fewer number of bits
(even as low as | bit per sample) using appropriate noise shaping quantizers,
thus, trading off bits for samples and simplifying the structure of the analog
part of the playback system.

To understand the motivation behind this application, consider an analog
signal sampled at a rate fg, such as 44.1 kHz for digital audio. The analog
signal is prefiltered by an analog lowpass antialiasing prefilter having cut-
off frequency f. < f;/2 and then sampled at rate f; and quantized. This
operation is shown below.
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The prefilter ensures that the spectral images generated by the sampling
process at integral multiples of f do not overlap, as required by the sam-
pling theorem. This is shown below (we ignore here the scaling factor 1/7").
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After digital processing, the sampled signal is reconstructed back to ana-
log form by a D/A staircase reconstructor, followed by an analog anti-image
lowpass postfilter with effective cutoff f, /2. as below.
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The D/A converter, with its typical sin 2 /x response, removes the spec-
tral images partially: the postfilter completes their removal. The combina-
tion of the staircase DAC and the postfilter emulates the ideal reconstruct-
ing analog filter. The ideal reconstructor 1s a lowpass filter with cutoff the
Nyquist frequency f,/2. It has a very sharp transition between its passband,
that 1s, the Nyquist interval, and its stopband, as shown below.
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In hi-fi applications such as digital audio, to maintain high quality in the
resulting reconstructed analog signal, a very high quality analog postfilter is
required, which may be expensive.

One way to alleviate the need for a high quality postfilter is to increase
the sampling rate. This would cause the spectral images to be more widely
separated and, therefore, require a less stringent, simpler, lowpass postfilter.
This is depicted below, for a new sampling rate that is four times higher than
required, f, = 4f,.
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The passband of the postfilter extends up to fpass = fs /8 = [s/2, but its
stopband need only begin at fyop, = f' — f¢ /8 =Tf/8.

It 1s this wide transition region between passband and stopband that al-
lows the use of a less stringent postfilter. For example, in oversampled digi-
tal audio applications, simple third-order Butterworth or Bessel analog post-
filters are used.



The same conclusion can also be drawn in the time domain. The figure
below shows the staircase output of the D/A converter for the two sampling
rates fg and f," = 4f,. It is evident that the higher the sampling rate. the
more closely the staircase output approximates the true signal, and the easier
it is for the postfilter to smooth out the staircase levels.
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The above approach, however, is impractical because it requires the ac-
tual resampling of the analog signal at the higher rate f,’. For example, in a
CD player or in an MP3 file, the low rate samples are already stored at the
prescribed rate of 44.1 kHz and the audio signal cannot be resampled.

The philosophy of oversampling is to increase the sampling rate digitally
using an interpolation filter which operates only on the available low-rate
input samples.



With respect to the new rate f," and new Nyquist interval [—f,' /2. f,'/2].
the spectrum of the low-rate samples will be as shown below, assuming
that the initial sampling process was perfect and that the f,-replicas are not
overlapping.
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This is also the spectrum of the high-rate upsampled signal at the output of
the rate expander.
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A digital lowpass FIR filter with cutoff frequency f,'/8 and operating
at the high rate f.", would eliminate the three spectral replicas that lie be-
tween replicas at multiples of f,’. as shown below, and the resulting spec-
trum would be as if the signal that had been sampled at the high rate [,
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The digital filter’s response is plotted here both with respect to the phys-
ical frequency f in Hz, and the corresponding digital frequency normalized
to the higher rate f/, that is, ' = 27 f/f,, in radians/sample.



The digital filter, being periodic in f with period f,'. cannot remove the
spectral replicas that are centered at integral multiples of f,’. Those are
removed later by the D/A reconstructor and the anti-image analog postfilter.

In summary, a substantial part of the analog reconstruction process is
accomplished by DSP methods, that is, using a digital oversampling filter
to remove several adjacent spectral replicas and thereby easing the require-
ments of the analog postfilter. The required sharp transition characteristics
of the overall reconstructor are provided by the digital filter.

Thus, the high-quality analog postfilter is traded off for a high-quality
digital filter operating at a higher sampling rate. The overall system is de-
picted below.
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How does an interpolation filter operate in the time domain and calculate
the missing signal values between low-rate samples? To illustrate the type
of operations it must carry out, consider a 4-fold interpolator and a set of six
successive low-rate samples { A, B, C', D. E. F'} as shown below.
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The filter calculates three intermediate samples, such as { X, Y, 7}, be-
tween any two low-rate samples by forming linear combinations of the sur-
rounding low-rate samples.

Depending on the type of interpolator and desired quality of the calcu-
lated values, several different ways of calculating { X, Y, 7} are possible.
For example. the simplest one is to keep the value of the previous sample '
constant throughout the sampling interval and define:

X=Y=/7=C

This choice corresponds to the so-called hold interpolator.
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Another simple possibility is to interpolate linearly between samples
{C, D} calculating { X, Y, Z} as follows:
X =0.75C"+0.25D
Y =0.50C 4+ 0.50D
Z =0.25C"+0.75D
Indeed, the straight line connecting C' and D is parametrized as
D-C
T
for 0 < ¢ < T. Setting t = T", 27", 3T", with T" = T'/4, gives the above
expressions for { XY, Z}.
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C'+



For more accurate interpolation, more surrounding samples must be taken
into account. For example, using the four samples { A, B, C', D}. we have:

X =—-0.18B+0.90C + 0.30D — 0.13F
Y =—-021B+0.64C +0.64D — 0.21F
Z =—0.13B4+0.30C 4+ 090D — 0.18E

corresponding to a length-17 FIR approximation to the ideal interpolation
filter (this 1s derived later.)

Similarly, a length-25 approximation to the ideal interpolator uses six
surrounding low-rate samples { A, B, C, D, E. F'}, as follows:

X =0.10A-0.188 +0.90C 4+ 0.30D — 0.13E + 0.08F
Y =013A-021B +0.64C 4+ 0.64D — 0.21FE + 0.13F
Z =0.084 -0.13B + 0.30C" +0.90D — 0.18E 4+ 0.10F

In general, the more the surrounding samples, the more accurate the cal-
culated values. It is not unsual to use 20-30 surrounding low-rate samples.

The above interpolation expressions do not quite look like the convolu-
tional equations of linear filtering. They are special cases of the polyphase
realizations of the interpolation filters and are equivalent to convolution.

They will be discussed in detail below, where starting with the frequency
domain specifications of the inteprolation filter, its impulse response and
corresponding direct and polyphase realization forms are derived.



Interpolation Filter Design

Direct Form

Consider the general case of an L-fold interpolator, which increases the
sampling rate by a factor of L. that is, f,' = Lf,. The L-fold rate expander
inserts L —1 zeros between adjacent low-rate samples and the corresponding
L — 1 interpolated values are calculated by an FIR digital filter operating at
the high rate L f.
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Let x(n) denote the low-rate samples that are input to the rate expander
and let x,,(n") be its high-rate output, consisting of the low-rate samples
separated by L — 1 zeros. With respect to the high-rate time index n’. the
low-rate samples occur every L high-rate ones, that is, at integral multiples
of L,n"=nlL,

Typ(nLl) = x(n)



The L — 1 intermediate samples between x,(nL) and xy,(n L+ L) are zero:
Typ(nL +1) =0, i=1,2...,L—1

This is shown below. More compactly, the upsampled signal x,(n") can be
defined with respect to the high-rate time index n’ by:

o () = x(n), it n’=nlL
ST 0, otherwise

x(n)
x(n-1) x(n+1)
x(n+2)
I rate f,
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n-1 n n+1 n+2
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x (nL-L) P XyplnL+L)
v * Xyp(nL+2L)
L-1 zeros —»= I rate Lf,
*—o o oo —o o o » 5’ = fast time
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Given an arbitrary value of the high-rate index n’. we can always write it
uniguely in the form,
n' =nl +i

where 7 is restricted to the range of values, 2 = 0,1, ..., L — 1. The integers
n and 7 are the quotient and remainder of the division of »” by L.

Intuitively, this means that n” will either fall exactly on a low-rate sample
(when ¢ = 0), or will fall strictly between two of them (i # 0). Using
1T"= LT", we find the absolute time in seconds corresponding to n’

t=n"T" =nLT +iT"'=nT +:T"

that is, it will be offset from a low-rate sampling time by 2 high-rate sam-

pling units 7”. The interpolated values must be computed at these times.
The ideal L-fold interpolation filter is a lowpass filter, operating at the

fast rate f,'. with cutoff frequency equal to the low-rate Nyquist frequency

fe = fs/2,orinterms of f,,

s K
=5 =51

and expressed in units of the digital frequency, w’ = 27 f/ f,’
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The frequency response of this filter is shown below. Its passband gain
1s taken to be L instead of unity. This 1s justified below. The ideal impulse
response coefficients are obtained from the inverse Fourier transform:
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An FIR approximation to the ideal interpolator is obtained by truncating
d(k") to finite length, say N = 2LM + 1:

sin(wk' /L)
T J;’II(L'

d(k') = — LM <k < LM

sinc-interpolator




A causal version of the filter is obtained by delaying it by LM samples:
sin(m(n’ — LM)/L)

hin)=d(n — LM) = (' — LA/ n=01..N-=1
And a windowed version is obtained by:
h(n') = w(n')d(n" — LM) , n=01,...,N-1

where w(n') is an appropriate length- N window, such as Hamming:

Vrn!
w(n') = 0.54 — 0.46 cos ({ ! 1)‘ n=01,... N—1

The output of the ideal FIR interpolation filter is obtained by the convolution
of the upsampled input z,(n") with the impulse response d(k’):

LM

Yup(n') = Z d(E)xgp(n' — k)

k'=—LM




Polyphase Form

The interpolated values between the low-rate samples (1L ) and x,(n L+
L). that is, the values at the high-rate time instants, n" = nL + 7. are calcu-
lated by the filter as follows:

LM

yp(nL+i)= Y d(H)vgmnL+i—Fk) — i=01,....L-1
k'=—LM

Writing uniquely, &' = EL+j. with 0 < j < L —1, and replacing the single
summation over &’ by a double summation over & and j, we find
M—1 L—1
yup(-n.[, +1) = Z Z d(kL + j);l.‘up(?l-L +i1— kL —7)
k=—M j=0

To be precise, for the case ¢ = 0, the summation over & should be over
the range —M < k < M. But as we will see shortly, the term £ = M does
not contribute to the sum.



We define the ith polyphase subfilter, for: = 0,1,...., L — 1. by,

di(k) =d(kL + 1)/, ~M<E<M-1

Then, we can rewrite the ith interpolated sample value as:

M-1 L-1

Yup(nL + 7) Z Zd Jxup(nL — kL +1i— j)
k=—M j=0

But the upsampled input signal is non-zero only at times that are integral
multiples of L. Therefore,

Typ(nL — kL +1—7)=0, if 2%
This follows from the fact that | — j| < L — 1. Thus, keeping only the
7 =1 term 1n the above convolution sum, we obtain,

M-1
yop(nL+1i) = Y di(k)zy(nL —kL),  i=0,1,....L—1
k=—M



or, since xy,(nL) = x(n), we have in terms of the low-rate samples:

M-1

vi(n) = Y di(k)x(n — k) i=0.1,.... L1

k=—M

where we set y;(n) = wyy(nL + 7). Thus, the ith interpolated value, is
computed by the ith polyphase subfilter, d;(%), which has length 2)/ and
is acting only on the low-rate input samples z(n). Each interpolated value
is computed as a linear combination of M low-rate samples above and M
below the desired interpolation time, as shown below.

yi(n)
«— M low-rate samples — — M low-rate samples —
x(n) @ o X(n+1)
x(n-1) o ? ox(n+2)
x(n-M+1) i x(n+M)
I ! I > 7
n-M+1 n-1 n T n+l  n+2 n+M

n =nl+i



M-1

yi(n) = Y di(k)x(n — k) i=01,....L—1
fe=— M

y;(n)
«— M low-rate samples — «— M low-rate samples —

x(n-1) .

x(n) e 0O o x(n+l)
| ®x(n+2)
x(n-M+1) i x(n+M)
{ | I 7
n-M+1 n-1 n T n+l  n+2 n+M

n =nl+i

Using the L subfilters, interpolation is performed at a reduced computa-
tional cost as compared with the cost of the full, length-/N, interpolation
filter (k") acting on the upsampled signal z,(n’).



The computational cost of the full direct-form is essentially 2LM mul-
tiplications per interpolated value, or, 2L?M multiplications for computing
L interpolated values.

By contrast, the polyphase form requires 2)/ multiplications per polyphase
subfilter, or, 2L M multiplications for L interpolated values.

Thus, the polyphase subfilter implementation achieves a factor of L in
computational savings. Another way to view the computational rate is in
terms of the total number of multiplications per second required for the
filtering operations, that is,

R=N(Lf,)=NLf, (directform)
R=L(2M)f, = Nf, (polyphase form)

where in the direct form we have a single filter of length /N operating at rate
L fs and in the polyphase form we have L filters operating at f,, each having
computational rate (21]) fs multiplications per second.

Actually, there are L — 1 subfilters of length (2A7) and one, the filter
do(k), of length (2M + 1), giving rise to

R=(L-1)2M)f.+(2M +1)f, = Nf,
where N = 2L0M + 1.



The polyphase implementation is depicted below, where during each
low-rate sampling period 7', the commutator reads, in sequence of 7" =
T'/ L seconds, the L interpolated values at the outputs of the subfilters.

subfilter Yo(n)
x(n) dy(K)
T T subfilter
e d,(k)
T T=T/L
: -
OW rate high rat
f subfilter 1gLfr'1 ©
’ d; (k) g

This can be seen more formally, as follows. Let (! denote the unit delay
with respect to the high rate L f and let z—! denote the low-rate delay. Since
L high-rate delays equal one low-rate delay. that is, L7" = T, we will have:



Next, we consider the Oth polyphase subfilter, dy (%), which plays a spe-
cial role. We have,
sin( 7k i
do(k) = d(kL) = L’”ik ) = d(k), —M<E<M
and therefore. its output will be trivially equal to its input, that is, equal to
the low-rate input sample x(n) = zyy(nL). Indeed,

M—-1 M—-1

Yo(n )—'Jup nlL) Z do(k)x(n — k) Z o(k)z(n —k)=x(n)

k=—M k=—M

This property is preserved even for the windowed case, because all win-
dows w(n') are equal to unity at their middle. This result justifies the choice
for the passband gain of the interpolator filter t{:} be equal to L instead of 1.
If the gain were 1, we would have, a;up(nL) = x(n)/L.

The causal filter implementatmn requires that we either delay the output
or advance the input by M units. We choose the latter. The polyphase
subfilters can be made causal by a delay of M low-rate samples:

hi(n) =d;(n — M) =d((n— M)L+i) =d(nL+i— LM)
for,n=0,1,....2M —1.



For the windowed case, we have:
hi(n) =d(nL+i— LM)w(nL + 1), n=01...,2M -1

In terms of the causal subfilters h;(n), the filtering equation becomes,

M-—1 M-—1
= Y di(k)x(n—k)= > hi(k+M)z(n — k)
k=—M k=—M

or, setting m = k + M and k = m — M,

th(m (M +n—m)|, 1 =0.1,....L—1

where P = 2M — 1 denotes the order of each polyphase subfilter. In other
words, the interpolated samples are obtained by ordinary causal FIR filter-
ing of the fime-advanced low-rate input samples. The same result can also
be obtained by z-transforms. The causal definition reads in the z-domain:

Hi(z) = ,:-_MD.E-(_:,)
where =~ represents a low-rate delay. Similarly, for the output,

Yi(z) = Di(2)X (2) = Hi(z) [ X (2)]



The sample-by-sample processing implementation requires a common
low-rate tapped delay line which is used in sequence by all the subfilters
h;(n) before its contents are updated. The figure below shows a concrete
example when L = 4 and M = 2.
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low-rate >
input B
h
x(n+2) l P
-1
x(n+1) 74
high-rate
Y output
-1 =
- L/ Vpl(11)
x(n) 72

34

]




The required time-advance by M samples is implemented by initially
filling the delay line with the first M low-rate samples. The internal states
of the tapped delay line can be defined as

Wy (n) = (M +n —m), m=20,1..... P
Then, the filtering equation can be written as the dot-product,
yi(n) = h] w(n) = dot(P, h;,w(n)), i=0.1,..., L—1

After computing the outputs of the L subfilters, the internal state w may be
updated to the next time instant by a call to the I2SP function, delay, which
shifts the contents:

W (n+1) = wy,—1(n), m=1.2...,P

This leads to the following sample processing algorithm for the polyphase

form: Initialize the internal state vector, w(n) = [wo(n), wi(n), ..., wp(n)]t
by filling it with the first M low-rate input samples, xg, xq.....x5_1. that
1s, at time n = (0 start with,

W(U) = [[} Ipr—1s TM—24 -« .y L. 0,0, ..., Q]T

M — 1 zeros



The value wp(0) need not be initialized—it is read as the current input
sample. If the low-rate samples are being read sequentially from a file or
an input port, then this initialization can be implemented by the following
algorithm:

for m = M down to m = 1 do:
read low-rate input sample =
Wy = T

Then, proceed by reading each successive low-rate sample, x(M + n),
n=0,1,....and processing it by the algorithm:

for each low-rate input sample = do:
wy =1
for i =0,1,..., L — 1 compute:
. N
delay( P, w)

where the function, delay(/’, w), represents the shifting of the delay line,
that is, replacing the current w, by the next one, with the first 7 elements
shifted to become the last /7 elements (with wqy overwritten in the next call),

[;EUD* wy, ...y 'ZL.-‘p_L. 'u‘p]T = [H‘{). EL-‘[}. wy, ..., 'u.-'p_L]T

first P shifted




The effect of the ideal interpolator in the frequency domain is shown
below. The put spectrum consists of replicas at multiples of the input
sampling rate f.

The filter removes all of these replicas, except those that are multiples
of the output rate Lf,. The output spectrum consists only of replicas at
multiples of L f,. (The scaling by the gain L is not shown.)

ideal interpolator

.....................................................................................................................................

X X Y () =X(f)
) tL /) digital filter| | (/) =X/
e D(f) g
rate f, upsampler | pa¢e Lf, - rate Lf,
A input spectrum X(f) A output spectrum Yup(f')
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Kaiser Window Designs

Digital interpolation filters can be designed by a variety of filter design
methods, such as the Fourier series method with windowing, Parks-McClellan,
or even IIR designs. Here we summarize FIR designs based on the Kaiser
window method.

We follow the design steps of I12SP-Sect.10.2, but use f, in place of
fs. because the interpolation filter is operating at the fast rate f,". For any
length-N window w(n'), the interpolator’s impulse response is computed

by
h(n") = w(n')d(n" — LM), n=01,....N—1=2LM

The L length-(2M) polyphase subfilters are defined in terms of A(n') as
follows. Fori =0.1..... L—1,

hi(n) = h(nL + 1), n=0,1,...,2M -1



For a Kaiser window design, we start by specifying the desired stopband
attenuation A in dB, and desired transition width A f about the ideal cutoff
frequency:

s s
le=91 =73

so that the passband and stopband frequencies are:

1 1
fpass:fc_aﬂf- fﬂmp:fc‘l‘iﬂf

The Kaiser window parameters are calculated by:

6 =10"4/%
A—17.95
D=———
14.36

a=0.1102(A — 8.7) (because, typically, A > 50 dB)
N—1> Df, _ DLf, _ DL
Af Af AF

where we used [, in the formula for N and set AF = Af/f,. Then, N
must be rounded up to the smallest odd integer of the form., N = 2LM + 1
satisfying the above inequality.



The design specifications are shown in the figure below.

A
\H(f)I /L
1+3 \ ,
. Af T
— ] A
§ 4 Illl'l l
I | = f
0 2L 112 1’

The designed length- N impulse response is,
h(n') = w(n')d(n"— LM), n=01,....N—1=2LM

with w(n') given forn’ =0,1,..., N — 1:

/ — ! 9 2
w(n') = Io(ay/1 (HIO“_SJI) /(LM)?)

The frequency response of the designed filter may be computed by:

Z h(n')e=2mifn' /1 Z h(n')e=2mifn'/(Lfs)

n'=0

The designed filter h(n") can be implemented in its direct or polyphase
forms.



Multistage Designs

Interpolation filters can also be implemented in a multistage form, whereby
the sampling rate is gradually increased in stages until the final rate 1s reached.
An example is shown below. The first filter increases the sampling rate by
a factor of Lg, the second by a factor of L, and the third by Lo, so that
the overall interpolation factor is L = Ly L1 Lo. Such multistage realizations
allow additional savings in the overall computational rate of the interpolator.

—""' TLI}

H,

tL

H,

L

3

T

LI:I'L]LE.fi

—

The first filter Hy(f) must have the most stringent specifications in the
sense that it has the desired transition width A f, which is typically very nar-
row. The remaining stages have much wider transition widths and therefore
smaller filter lengths.



To see this, consider the design of a 4-fold interpolator realized as the
cascade of two 2-fold interpolators, L. = LgLy, with Ly = Ly = 2. The
desired ideal frequency characteristics of the two interpolation filters are
depicted below.

A Hu H] Ho Ho HD

The first filter Hy is operating at the intermediate rate f,' = Lo fs = 2/, and
is designed to act as an ideal lowpass filter with cutoff f, = f,/2 = f,'/4.
It removes all the replicas at multiples of its input rate f,, except those
that are multiples of its output rate 2f,. It can be designed using a Kaiser
window. For example, assuming a narrow transition width A f about f., and
a stopband attenuation A, we have,

Df  D(2f,) 2D _Aaf

No—1= = = ., AF =
) Af O Af T AF s

where D is the Kaiser D-factor that depends on the attenuation A.



The second interpolator H; is operating at the rate of 2f," = 4/, and
must remove all replicas at multiples of its input rate 2 f,, except those that
are multiples of its output rate 4 f5. Therefore, it will have a wider transition
width given by

ﬂflzfsf_fSZQfs_fs:fs

[ts Kaiser length will be:

D@Af) _ DEL) _

J‘fl fs
The combined effect of the two interpolation filters is to remove every
three intervening replicas leaving only the replicas at multiples of 4 f,. Be-
cause Hy 1s operating at rate 2f; and Hq at rate 4 f,, the corresponding fre-
quency responses will be:

Ny —1=

No—1 Ni—1
H[](f) — Z h-[](?I-IJE’_Eﬂj‘fnff{zfs\’l. Hl(f) — Z -'I::'-j_('?I.I)E_Qﬂjf?lu(ﬁlfS}
n'/=0

n'=0



Assuming that both filters hp(n") and hy () are realized in their polyphase
forms, then the total computational rate of the multistage case will be. in

MAC:s per second:

S oD 2D |
Ry = —"?\'Dfs + Al(zfs) -— F + 8D fs — JF(l + —1_\ij5

By contrast, a single stage design would have filter length:

v__ DWULf) 4D
ST Af AR

and polyphase computational rate:

i 4D
Rsingle =N fs =~ Efs

The relative performance of the two implementations will be

Hmu]ti 1 +4AF 1 .
= = — 4+ 2AF
Rsing]e 2 2 -
Computational savings will take place whenever:
1 1
5+ 2AF < 1 & AF < 1

which is easily satisfied because typically AF is of the order of 1/10.



As another example, consider an 8-fold interpolator which can be real-

ized in three different multistage ways:

8=2xX2x2=2x4=4x?2

The frequency characteristics of the different stages are shown below.

2x2x2 realization

I e A - f
0 1 o 3 A s, of I 8
le— Af, —»
.~ A
A jfﬂ Hl 2x4 realization
/ I | I | rommm |
o i | | | |
! \\\i"_"T _____ i_"'_T '''' i__'_'T'_'_Ji ''''' F_'_'Ji """ T Ji" ! > f
! fooo2f 3 4 Sh o L 8
k= Af) —
A j?rﬂ F. 4x2 realization
: : h: H”:r""': """ - ' . : > f
’ .o 3 4 S o, TN 8,
— A, ——



The interpolator at each stage removes all replicas at multiples of ifs input
rate, except those that are multiples of its output rate. In all three cases, the
combined effect is to remove every seven intervening replicas leaving only
the replicas at the multiples of 8f,.

The computational rates of the three multistage cases versus a single
stage can be derived as above (see [2SP—Sect. 12.2.5),

Rmu 1 1 - -

Rsmgl:e =1 + 2AF (2x4 case)
Rmu i 1 7 -

Rsmgl:f: — 1 + ng (2x2x2 case)
Rmu 1 1 1

Rsmgl:e =3 — §JF (4x2 case)

Comparing the three multistage cases, it appears that the 2x4 case is

more efficient than the 2x2x2 case. which 1s more efficient than the 4x?2
case. Indeed.

1 1 7
— L2AF < — L —AF < -
4 14 3 ‘

the second inequality being valid for AF' < 1/4.

| =

AF

3

)

I



Linear and Hold Interpolators

An ideal interpolator may be thought of as the sampled version of the ideal
analog reconstructor, sampled at the high rate £, that is, with 7" = T'/ L,
sin(7t/T) _ sin(7k' /L)

mt/T | k! /L

d(k"y = h(E'T") =

This relationship can be applied to other analog reconstructors, resulting
in simpler interpolators. For any analog reconstructor h(t) that reconstructs
the low-rate samples by

Ya(t) = Z h(t — mT)xz(m)

the interpolated samples are obtained by resampling v, (¢) at the rate f,":
Yo (n'T") = Z h(n"T" — mT)x(m)
Tt
which can be written in the form

Yup(nt') = Z d(n" —mL)x(m)

m

where d(k') is obtained from /() via the above mapping. The interpolation
equation can be written also in terms of the upsampled version of z(n)

Yup(n') = Z d(n' —m')zy(m') = Z d(E")zyp(n" — k')

m! k!



Two of the most common interpolators are the hold and linear interpola-
tors resulting from the sample/hold and linear analog reconstructors having
impulse responses:

i

o<t < L _
nty=14 - BOST< g h(t) = o i HsT
' (). otherwise - 0. otherwise

Setting ¢t = £"T" in these definitions. and using the relationship 7' = LT",
we find the following discrete-time versions:
I, if0<KE<L-1

(hold) d(k') = { 0, otherwise = u(k') —u(k' — L)

Ll R—— |
(linear) d(F') = { T if |A|<L-—1
0,

otherwise

Note that in the linear case, the endpoints £/ = =+ are not considered
because d(k") vanishes there. The figure below shows the sampled impulse
responses for L = &.

h(r)

h(r)

T'=T/8 T'=T/8



The filtering operations of these interpolators are very simple. The hold
interpolator holds each low-rate sample constant for L high-rate sampling
times. In other words, each low-rate sample is repeated L times at the high
rate. The linear interpolator interpolates linearly between a given low-rate
sample and the next one.

To see this, we rewrite the filtering equation in its polyphase form. Set-
ting. n’ =nL +iand k' = kL + j. we have,

Yup(nL + 1) Za’ r(n — k)

where d;(£) are the corresponding polyphase subfilters:
di(k) =d(kL + 1), 1 =0,1,..., L—1

and they are found to be (see [2SP-Sect. 12.3 for details),
(hold) d;(k) = o(k)

5k +1)

(linear)  d;(k) = (1 - i)d(k) I

I
fore=0,1,...,L — 1.



Inserting these impulse responses into the filtering equations, we obtain
the explicit forms of the interpolation equations in the two cases. For the
hold case,

Yp(nL +1) = x(n)|. 1=0.1,.... L—1

so that each low-rate sample is repeated L times. And. for the linear case,

Yp(nL + i) = (1 — E) (n) + %I(ﬂ +1)], i=0,1,..., L—-1

corresponding to linearly weighting the two successive low-rate samples
x(n) and x(n+ 1). For example, when L = 8 the eight interpolated samples
between x(n) and x(n + 1) are calculated by:

Yup(8n) = z(n)
Yup(8nn + 1) = 0875 x(n) + 0.125x(n + 1)
Yap(8n +2) = 0.750 x(n) + 0.250 x(n + 1)
Yup(8n +3) = 0.625x(n) + 0.375x(n + 1)
Yup(8n +4) = 0.500 z(n) + 0.500 z(n + 1)
Yup(8nn +5) = 0375 x(n) + 0.625 x(n + 1)
Yup(8n 4+ 6) = 0.250 z(n) + 0.750 x(n + 1)
Yup(S12 +7) = 0.125x(n) + 0.875x(n + 1)



The figure below shows the interpolated signal using 8-fold hold and
linear interpolators.

.l.'up[8H—8] hOld
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To understand the extent to which the hold and linear interpolators dif-
fer from the 1deal interpolator, we determine their frequency responses (see
[2SP-Sect. 12.3for details). For the hold case,

—jLw’ . o o
D(f) = l1—e j_ _ 511_1(Lw /Q)E_j{L_l}w’m _ Fflﬂ(ﬂf/fs) e—im(L—1)f/Lf:
1 —ev sin(w’/2) sin(mf/Lfs)

And, for the linear case,

sin(Lw'/2) -

sin(w’/2)

9_1
L

sin(mf/fs)
sin(mf/Lfs)

Both frequency responses are periodic in f with period f,’ = L f, and
vanish at all multiples of f, which are nor multiples of L f,. Therefore, they
partially remove the spectral replicas that are between multiples of f,". They
are shown below for the case L = 8, together with the ideal response.

D() = 7

A
/ideal interpolator
8 =
hold interpolator
o / linear interpolator
S .

A A A A A

Because of their simple structure, linear and hold interpolators are used
in multistage implementations of interpolators, especially in the latter stages
that have higher sampling rates.



Example - 4-fold Interpolators

Consider the case of a 4-fold interpolator having L = 4 and polyphase
filter length 2M = 4 or M = 2. This corresponds to a filter length N =
2LM + 1 = 17. The 1deal impulse response will be:

sin(mwk'/4)

(k) = =

—8 <k <8

or, numerically,

h=d=1[0,-0.13, —0.21, —0.18, 0, 0.30, 0.64, 0.90, 1, 0.90, 0.64,
0.30, 0, —0.18, —0.21, —0.13, 0]
where h 1s the causal version, with time origin shifted to the left of the

vector, and d is the symmetric one with time origin at the middle of the
vector. This truncated ideal impulse response is shown below.

d(k’)

L=4, M=2, N=17




The four polyphase subfilters are defined as follows, fori = 0,1, 2, 3,
di(k) = d(4k + 1), —2<k<1

They are extracted from h by taking every fourth entry, starting with the zth
entry:
0,0, 1, 0]

0,
(—0.13, 0.30, 0.90, —0.18]
[—0.21, 0.64, 0.64, —0.21]
h- = d3 = [—0.18, 0.90, 0.30, —0.13]
The interpolated samples between z(n) = z,,(4n) and z(n + 1) =

ryp(4n + 4) are calculated from the polyphase filtering equation, applied
here with M =2 and P =2M — 1 = 3,

E:h r(M+n—-m), i=0,1,....L—1

m=0

All four subfilters act on the (time-advanced) low-rate input samples
{x(n+2), z(n+1), z(n), z(n—1)}, or, {zyp(4n+8), zyp(dn+4), zyp(4n),
ryp(4n—4)}. The polyphase equations can be cast in a compact matrix form:

yup(4n) 0 0 1 O | zup(4n +8)
yop(dn+ 1) | [ =013 0.30 0.90 —0.18]| |zy(4n +4)
Yp(dn+2)| | =021 064 0.64 —021| |z,(4n)

| Yup(4n 4+ 3) —0.18 0.90 0.30 —0.13| |zgp(dn —4)



These results can be understood more intuitively using the LTI form of
convolution, that is, superimposing the full length-17 symmetric impulse
response d at the four contributing low-rate samples and summing up their
contributions at the four desired time instants, that 1s, at n’ = 4n + 1,1 =
0.1,2, 3. as shown below.

v (4n+1)
X, (4n-4) Xo4m) 5
e .
: A Xypldn+4)
L af ! I‘\ : xup(4ﬂ+8’ll
i i E}" i
i : i I
I : 1 1_'I
f P
/ A
3 | ] ] ) #
- T n
; \\ z‘l 5 I | i ~\ /"\_/\ / >
n G Al J_/ -

" 4n-4 4n © 0 an+d " 4na8

For example, referring to the sampled impulse response values, we find
that at time instant 4n + 1, the input sample z,,(4n + 8) will contribute
an amount —0.13x,,(4n + 8), the sample xy,(4n + 4) will contribute an
amount 0.30x,,(4n + 4), the sample z,,(4n) will contribute 0.90z,,(4n),
and the sample zyp(4n — 4) an amount —0.18z,,(4n — 4). The interpolated
value 1s built up from these four contributions:

Yup(An+1) = —0.132,(4n+8)+0.30zp(4n+4)4+0.902,p (41 ) —0.182y,(4n—4)

Similarly, it should be evident that, y,,(4n) = zyp(4n). with the contri-
butions of the other low-rate inputs vanishing at time instant 4n.



We may also use the flip-and-slide form of convolution, in which the
impulse response d(%') is flipped. delayed. and positioned at the sampling
instant n’ to be computed. For example. at n" = 4n + 1. we have:

Yop(dn +1) = 3 d(4n+1— K )zyp(K)
k!

The figure below shows this operation. Because of symmetry, the flipped
impulse response is the same as in the LTI form. It 1s then translated to
n' = 4n + 1 and the above linear combination is performed.

flipped/shifted

xup{éh:—-ﬁl} x,p(4n) ddn+1-k) = impulse response

Xypl4n+4)

0.90 5
X, P(4n +8)

» k'

The only contributions come from the low-rate samples that fall within the
finite extent of the impulse response. Thus, only the terms k' = 4n — 4, 4n,
4n + 4, 4n + 8 contribute, and each is weighted by the appropriate impulse
response values that are read off from the figure, that is, {—0.18,0.90, 0.30,
—0.13}, so that again:

Yup(4n+1) = —0.182p(4n—4)+0.90zp (41) 4+0.302p (4n+4) —0.132p (4n+-8)



The Hamming windowed version of the filter is obtained by multiplying
the full length-17 filter response h by a length-17 Hamming window. The
resulting impulse response becomes:

h = [0, —0.02, —0.05, —0.07, 0, 0.22, 0.55, 0.87, 1, 0.87, 0.55, 0.22, 0,
—0.07, —0.05, —0.02, 0]

The polyphase interpolation equations become in this case:

Cyup(d4n) ] - 0 0 1 0] [zup(4n +8)]
Yp(dn+ 1) | =0.02 022 087 —0.07| |zyp(dn +4)
Yp(dn+2)| — | =0.05 0.55 0.55 —0.05] |z,(4n)

| Yup(4n + 3) | —0.07 0.87 0.22 —0.02| |zyp(4n —4)

The graphs below compare the magnitude responses of the rectangularly
and Hamming windowed interpolation filters.

N=1% / Rectangular Window . N=17 / Hamming Window

IH )
IH{e )

1t \/ 1t
il -\\/“T""\-\-._ S 3

0 . .
Q.00 0.25 D.ﬁp 0.5 1.00 Q.00 0.25 A U.ﬁp 0.5 1.00
@’ in units of o @ in units of




A block diagram realization of the polyphase form for this example is
shown below. with all the subfilters using the same tapped delay line holding

the incoming low-rate samples, where the indicated polyphase subfilters are
defined by, forz =0,1,2, 3.

h; = [hio, hit, hia, hag], Hi(2) = hio + hirz"" + hioz ™ + higz ™"

-4

high-rate
output




As a concrete filtering example, consider the following low-rate input
signal z(n) consisting of 25 DC samples, and depicted below with respect
to the fast time scale:

r(n)={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1}

The interpolated values between these low-rate samples are shown below
for the cases of the rectangularly and Hamming windowed interpolating
filters. The input-on and input-off transients are evident.

Low—Rate Input
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As another example, consider the case of L = 4 and M = 12, that is,
interpolation filter length N = 2LM + 1 = 97. This is a more realistic
length for typical 4-fold oversampling digital filters used in audio playback
systems. The corresponding rectangularly and Hamming windowed magni-
tude responses are shown below, as are the interpolated output signals from

these two filters, for the same low-rate input signal z(n). Note the longer
input-on and input-off transients.
5 Rectangular Window, N=8% 5 Hamming Window, N=9%
f
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Here is another 4-fold interplation example for triangular and sinusoidal
input signals using a length-17 Hamming design.

Low—Rate Input Low—Rate Input
12 1.2
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Next, consider a 4-fold interpolation filter of length N = 25. Here, we have
N=2IM+1=25 = M=(N-1)/2L=(25-1)/8=3

Thus, we use 3 low-rate samples above and three below every interpolated
value to be computed. The length-25 ideal interpolation impulse response
1s calculated from, and shown below,

sin(7wk’/4)
Tk' /4

d(K') = for —12<k <12

This generates the numerical values (listed with 2-digit accuracy),

d= [0, 008 013, 0.10, 0.00, —0.13, —=0.21, —0.18,
0, 030, 064, 090, 1.00, 0.90, 064, 0.30,
0, —0.18, —0.21, —0.13, 0.00, 0.10, 0.13, 0.08, 0]

1) L=4, M=3, N=25

0.90




Given 20 = 6 low-rate samples { A, B, C', D, E, F'} as shown below,

z D
x 39
Co9 | E
B o F
A [ N [
I - » time
le— T —> — —T'=T/A4

The three values {.X, Y, Z} interpolated between C' and D are calculated
by convolving d with the upsampled low-rate samples. Using the flip-and-
slide form of convolution, we position the impulse response d at the three
successive positions, and read off the values of d(£") where it intersects with
the low-rate samples, and add up the results. This 1s epicted below.

The corresponding linear combinations of low-rate samples may be rewrit-
ten in their polyphase matrix form (with the low-rate samples listed from the
latest down to the earliest).

= QO m™

[X'| [(].(]8 ~0.13 0.30 090 —0.18 (],1[21'|
VIi=1013 —021 064 064 —021 0.13
[ZJ [0.1[} ~0.18 0.90 0.30 —0.13 (M]SJ




0.08
0.13
0.10

—0.13
—0.21
—0.18

0.30
0.64
0.90

0.90
0.64
0.30

—0.18
—0.21
—0.13

0.10
0.13
0.08

m

0




DAC Equalization

In an oversampling DSP system, the interpolator output samples are recon-
structed by a staircase D/A converter operating at the high rate f,' = Lf,.
[ts frequency response (normalized to unity gain at DC) is

sin(wf/fs) o—ITf /1S
Tf/fs

[t causes some attenuation within the Nyquist interval, with maximum of
about 4 dB at the Nyquist frequency f,'/2. For an L-fold interpolation filter
which has cutoff at f. = f,/2 = f,//2L, the maximum attenuation within
the filter’s passband will be:

Hdac(f) —

sin(r £,/ £.)
I

For large values of the oversampling ratio L. this attenuation is insignif-
icant, approaching 0 dB. Thus, one of the benefits of oversampling is that
the aperture effect of the DAC can be neglected.

However, for smaller values of L (for example, L < 8) it may be desir-
able to compensate this attenuation by designing the interpolation filter to
have an inverse shape to the sin x/z DAC response over the relevant pass-
band range.

_ sin(w/2L)

|Hclac(_fCJ| - }T/;)L




The desired equalized 1deal interpolation filter can then be defined by the
following equation:

LDy(f). if |f] <2
o it L

where Dgg( f) is essentially the inverse response 1/Hg,(f) with the phase
removed in order to keep D( f) real and even in f:

wf/f
sin(mwf/f)

In units of the high-rate digital frequency w’ = 27 f/f,/, we have,

Dﬂq(f): |f|£%

D(w') = ¢ sin(w/2)




Such a filter can be designed by the frequency sampling design method.
If the filter order 1s known, say N = 2LM + 1, then we can compute the
desired filter weights by the inverse N-point DFT:

. 1 LM
d(k') = N > D(w))e*. LM <K < LM
= LM

where w! are the N DFT frequencies spanning the symmetric Nyquist inter-
val [—m, 7l:
, 2w .
Wi = —LM <i:< LM

The designed causal windowed filter will be,

o

h(n") =d(n" — LM)w(n"), 0<n<N-1

In the Hamming window case, we must assume a desired value for /V.
In the Kaiser case, we may start with a desired stopband attenuation A and
transition width Af, and then determine the filter length N and the win-
dow parameter . Because the filter is sloping upwards in the passband, to
achieve a true attenuation A in the stopband, we may have to carry out the
design with a slightly larger value of A.



Note also that because c?(_k") and D(w') are real-valued, we may replace
the right-hand side of the IDFT by its real part and write it in the cosine
form:

LM
d(k) Z D(w!) cos(wk). LM <k < LM
N a_—L‘LI

and because D(w’) 1s even in '

LM
- 1
A(K) = = | Dlwh) + 23 D(w) cos(wih’ )] LM <k < LM
: i—=1

where D(wyf,) = D(0) = L. This expression can be simplified even further
by noting that D(w?!) is non-zero only for

T Comi o N LM 41 1
e < T 0 T 0 _ — Ma—
swisp T O UVsy s T Vst gg o7 5y

Thus, the summation can be restricted over 1 < ¢ < M, giving

L
d| EY = —
(%) N

v
142 Z .~ w/ cos(w/k’ )] —LM <k < LM



As a first example, consider a 2-times oversampling filter for digital
audio. Assume a nominal audio rate of f, = 40 kHz. transition width
Af = 5 kHz, and stopband attenuation A = 80 dB. The normalized width

iIs AF = Af/fs = 0.125. The Kaiser D parameter and filter length N will
be

A —T7.95 DL
— —— = 5.017. N—-1>=—=280.
D 1136 H.017 N—12> A7 0.3
which rounds up to N = &5,

The designed filter is shown below to-
gether with the inverse DAC response 1/|Hga(f)|. plotted over the high-

rate Nyquist interval. On the right, the passband 1s shown in a magnified

scale. Notice how the inverse DAC response reaches 4 dB at the Nyquist
frequency of f,'/2 = 40 kHz.
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The actual stopband attenuation is somewhat less than the prescribed 80
dB, namely, about 72 dB at f = f;/2 + Af/2 = 22.5 kHz. Thus, we may
wish to redesign the filter starting out with a somewhat larger attenuation.
For example, assuming A = 90 dB. we obtain filter length N = 93. The
redesigned filter is shown below, achieving 80 dB attenuation at 22.5 kHz.
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Postfilter Design and Equalization

In addition to compensating for the attenuation of the DAC, one may wish
to compensate for other effects. For example, the staircase output of the
DAC will be fed into an analog anti-image postfilter which introduces its
own slight attenuation within the desired passband. This attenuation can be
equalized digitally by the interpolation filter.

L-fold interpolator

................................................................

digital | analog
input e TL +Hintem rate Hoae HPDSt output
A passband spectral images
'/ postfilter / removed by postfilter \
/ _T_ stopband
Agop | / : |
— E—— > f
0 f/2 b Ly, 2Lf,
Jﬁ:ass fslop

Because of oversampling, the postfilter will have a wide transition re-
gion resulting in low filter order, such as 2 or 3. The postfilter must pro-
vide enough attenuation in its stopband to remove the spectral images of

the interpolated signal at multiples of f.’. which cannot be removed by the
interplator.



[ts passband must extend up to the low-rate Nyquist frequency, and its
stopband begins at the left edge of the first spectral image. that is,

fpass:%- f@tﬂp:fsf_fpass:[/fs_%

At fsop. the DAC already provides a certain amount of attenuation given by:

Sin(7 feop/ [ )
'Hfzal:::rp/fsJr

which, for large L, becomes approximately:

sin(m/2L) 1
T—mn/2L 2L

_sin(m —w/2L)  sin(w/2L)

Hac( fsto — : —
| Haac( S| m—m/2L m—m/2L

|Hdac(f€t0p)| —

or, in dB
Agac =~ 201og,o(2L)

The analog postfilter must supply an additional amount of attenuation
Agop. raising the total attenuation at fyp to a desired level, say Ay, dB:

"‘iltot — Adac + "‘ilstop



For example, suppose fs = 40 kHz and L = 4, and we require the total
suppression of the replicas to be more than Ay, = 60 dB. The stopband
frequency will be fyop = Lfs — fs/2 = 160 — 20 = 140 kHz. At that
frequency the DAC will provide an attenuation Ay, = 20log(8) = 18
dB, and therefore the postfilter must provide the rest:

Suppose we use a third-order Butterworth filter with magnitude response.

1

| \°
l -
- <ﬁ])

Apost(f) = =1010g,0 | Hpost(£)]> = 1010g,,

If_jr[:-ﬂs.I:(f)|2 —

and attenuation in dB:

(7))

where fj is the 3-dB normalization frequency to be determined.



The requirement that at fyp the attenuation be equal to Agp gives:
6
1+ (fstop)
fo

o = Faop [1070/10 — 1]7Y6 — 140 . [10%/10 — 1]

ASID]J — 1(] IUQ‘ID

which can be solved for fy:

—1/6 _ 98 kHz

The third-order Butterworth analog transfer function of the postfilter is:

1

5 s \° s\’
14+2( = 2 — :
N (f?o)+ (0) +(f?a)

where 2y = 27 fo. This postfilter will adequately remove the spectral im-
ages at multiples of f.”, but it will also cause a small amount of attenuation
within the desired passband. The maximum passband attenuations caused
by the postfilter and the DAC at fj,5s = fs/2 can be computed as follows,

Hpost(S) —

’ 20
Apost(fpass) = 10 lt}gm [1 + (f;?s) ] = 10 ]Dgw [1 + (;8)6] = 0.54 dB
sin (/2 ..
Adac(fpass) = —2010g;q [%11;5/;;:)] —0.22 dB

resulting in a total passband attenuation of 0.54 + 0.22 = 0.76 dB.



Such combined attenuation of the DAC and postfilter can be equalized
by the interpolator filter. Using the frequency sampling design, we replace
the interpolator’s defining equation by the doubly equalized version:

f/e - f'rz
w'/2 W' 6 . m
L|l—————| |1+ (— ;i W] < —
D(w') = Lin(w’/?.) - (w[}) o] < L
0, if E < || <7

T

where wy = 27 fo/ f.', with impulse response coefficients calculated by:

M w.f r) w . lfg
} 9 o ur = ﬁ u-:,f J
142 ; Lill(.;.u’/m] [1 + (w‘g) ] cos(w;k )]

for—LM < k' < LM. These coefficients must be weighted by an appropri-
ate window. The figure below shows shows a Kaiser design corresponding
to interpolator stopband attenuation of A = 60 dB and a transition width of
Af =5 kHz. As before, the resulting filter length is N = 121.
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For reference, the DAC response Hgac( f). postfilter response Hpogsi( f ).
and total response Hyqc(f)Hpost(f) are superimposed on the figure. Notice
how they meet their respective specifications at fgop, = 140 kHz. The DAC

response vanishes (i.e., it has infinite attenuation) at 1 =

its multiples.

160 kHz and all

The figure also shows the filter’s passband in a magnified scale, to-
gether with the plots of the total filter Hyac( f ) Hpost (/) and total inverse filter

li-f'.(Hdac(f)Hpost(f))'

DAC+Postfilter Equalization
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The effective overall analog reconstructor Higerp ( f ) Haac(f ) Hpost ([ ). con-
sisting of the equalized interpolator, DAC, and postfilter, 1s shown below.
The spectral images at multiples of f,' = 160 kHz are suppressed by more
than 60 dB and the 20 kHz passband 1s essentially flat. The figure also
shows the passband in a magnified scale.
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Bessel Postfilters

In digital audio applications, Bessel postfilters may also be used instead of
Butterworth filters. Bessel filters provide the additional benefit that they
have approximately linear phase over their passband.

The transfer function and magnitude response of a third-order Bessel
filter are given by,

15
Hpout(s) = - S\ 2 NE
=4 =4 ' ¥ =
15+ 1“'(52[.) +6(520) i (QD)
225
IHpﬂst(f)‘Q —

N EANEAY f)ﬁ
22—_}—|——1-.J(f{]) —I—[}(ﬁ]) —I—(fu

where (Jy = 27 fo and fj 1s related to the 3-dB frequency of the filter by
J3as = L.75fo

The passband attenuation of this filter can be equalized digitally in a
similar fashion. For equal 3-dB frequencies. Bessel filters fall off somewhat
less sharply than Butterworth ones. thus, suppressing the spectral images by
a lesser amount.



For example, for the previous 3-dB frequency figg = 28 kHz, we find
the normalization frequency fo = fag/1.75 = 16 kHz. The corresponding
postfilter attenuations at the passband and stopband frequencies, fpus = 20
kHz and [, = 140 kHz, calculated to be:

Apost( fpass) = 1.44 dB, Apost( fstop) = 33 dB

Thus, the DAC/postfilter combination will only achieve a total stopband
attenuation of 33 + 18 = 51 dB for the removal of the spectral images.
Similarly, the total passband attenuation to be compensated by the interpo-
lator will be 0.22 + 1.44 = 1.66 dB. If 51 dB suppression of the spectral
images 1s acceptable, then we may redesign the interpolator so that it sup-
presses its stopband also by 51 dB. With A = 51 and L = 4. the redesigned
interpolator will have Kaiser parameters:

A—-T7.95 DL

= DT 9008, N 1>= """ =050 N =97
D="- =209, N-l>="2=0503 = N=0
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The redesigned equalized interpolation filter and the effective overall re-
construction filter are shown below. The overall reconstructor has a flat
passband and suppresses all spectral images by at least 51 dB.
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degrees

The differences between the phase responses and between the magnitude
responses of the above Butterworth and Bessel postifiters are shown in the
graphs below. As before, the 3-dB frequencies were fy = 28 kHz for the
Butterworth filter, and fy = 16 kHz for Bessel.
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Decimation and Oversampling

Decimation by an integer factor L is the reverse of interpolation, that is,
decreasing the sampling rate from the high rate f.’ to the lower rate f,

X
L

An ideal interpolator replaces a low-rate signal xz(n) by the high-rate
interpolated signal 2/ (n”), which would ideally correspond to the resampling
of the analog signal at the higher rate. As shown below,

fsrr - fs:

ideal interpolator

X(f) X, (f Y, (f) =X(f)
) fL /) digital filter| '/ 4
e D(f) >~
rate f, upsampler | Lf, . rate Lf
A input spectum X(f) A output spectrum }’uptf)
/VVVV\,f (W R N
0 f of, o Lf, 0 f of, - Lf,

where, the spectrum X'(f) of z/(n’) is the spectrum of x(n) with L — 1
spectral images removed between multiples of f,'.



This ideal interpolation process can be reversed by keeping from z'(n’)
every Lth sample and discarding the I — 1 samples that were interpolated
between the low-rate ones.

This process of downsampling and its effect in the time and frequency
domains is depicted below.

F..I." »T’(f?, ) I I(”) ="Td0wn(” ) =”T’(”L)
LI rir.,
—| |- -
T’ i 1=LT
A - L ~f=1./L
downsampler

A input X'(f) A output X,,..(F)=X(f)
fl\ } } } } -rf / \/ ' v ' v ' v } \

0 f, 2f - L, 0 fy 2f, - Lf -/

Formally. the downsampled signal is defined in terms of the slow time scale
as follows:

= 2'(nL)
n'=nlL
For the ideal situation depicted above, the downsampled signal zgown(72)
coincides with the low-rate signal x(n) that would have been obtained had
the analog signal been resampled at the lower rate f, that is,

Tdown(n) = "rf{nfj

x(n) = Tgown(n) = z'(nL)



The gaps in the input spectrum X'( f) are necessary to guarantee this
equality. Dropping the sampling rate by a factor of L, shrinks the Nyquist
interval [—f,'/2, f'/2] by a factor of L to the new interval [—f, /2, f,/2].
Thus, if the signal had frequency components outside the new Nyquist in-
terval, aliasing would occur and xgown(n) # x(1).

In the above figure, the input spectrum was already restricted to the f;
Nyquist interval, and therefore, aliasing did not occur. The rate decrease
causes the spectral images of X/(f) at multiples of f," to be down shifted
and become images of X ( f) at multiples of f, without overlapping.

The mathematical justification of this down-shifting property is derived
by expressing the equation, x4owa(72) = «’(nL), in the frequency domain. It
can be shown (see [2SP-Problem 12.12) that:

1 L—1
)fdown(f) — E Z }{!(f - ?n'fsj
m=0




Therefore, the downsampling process causes the periodic replication of
the original spectrum X'( f) at multiples of the low rate fs. This operation
1s depicted below for L = 4.

Xﬁg} A

m =

Iy 2 "fs Ay
m } } -'-f dD““(f}
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In general, if the high-rate signal 2/(n") has frequency components out-
side the low-rate Nyquist interval [—f,/2. f./2], then downsampling alone
1s not sufficient to perform decimation. For example. noise in the signal,
such as quantization noise arising from the A/D conversion process, will
have such frequency components.



To avoid the aliasing that will arise by the downsampling spectrum repli-
cation property, the high-rate input z'(n") must be prefiltered by a digital
lowpass filter, called the decimation filter. The combined filter/downsampler
system is called a decimator and is depicted below.

ideal decimator

x'(n") - y'(n') Vioun )
| digital filter | L down™ >
1, H 1! downsampler f.
X;(f)_i_‘/ﬁltﬂr L Y’(fl}__l__l/ flltﬂ]‘ . A de““[f)
- W1, OELTLL,

The filter operates at the high rate f," and has cutoff frequency f, =
fs/2 = fJ/2L. It is similar to the ideal interpolation filter, except its DC
gain is unity instead of L. The high-rate output of the filter is downsampled
to obtain the desired low-rate decimated signal, with non-overlapping down-
shifted replicas:

, L—-1
, , o 1 o,
ydown{n) — Yy (??L) }down{f) — E Z Y {f — ?T?-fgj
0

=



The design of the decimation filter is identical to that of the interpolation
filter. For example, a length-/N FIR decimator can be obtained by window-
ing the (causal) ideal impulse response:

sin(mwk' /L)
k!

where n’ = 0,1, ..., N —1,and N = 2LM + 1. A Kaiser window w(n')
may be used. The downsampled output is obtained by:

h(n') =wn")d(n" — LM), where d(k') =

Ydown(n) = y'(nL) Z h(m")z'(nL —m')

Because only every Lth output of the filter is needed, the overall compu-
tational rate 1s reduced by a factor of L, that is,

1 Tl _ ar
:E;\f.s _;\fs

This is similar to the savings of the polyphase form of interpolation.



A simple implementation uses a length- /N tapped delay line into which
the high-rate input samples are shifted at the high rate f,". Every L inputs,
its contents are used to perform the filter’s dot product output computation.

Denoting the N-dimensional column-vectors of the impulse response
and of the internal states of the filter by,

B 1] 10 ] [ wp ]
hq w1
h f— W =
i h‘ﬂ-‘r—l i i wy_1 i

then, we may state the filtering/downsampling algorithm as follows:

for each high-rate input sample z' do:
wo =
for every Lth input, compute output:
Yaown = h'W
delay(N—1, w)]

where the function, delay( N —1, w), represents the shifting of the delay line,

that 1s, replacing the current w, by the next one,
T
W = [-u:@ wy., Wi, ..., -u.:p.,r_g]
Mg -

shifted




Multistage implementations of decimators are also possible. The proper
ordering of the decimation stages is the reverse of the interpolation case,
that is, the decimator with the most stringent specifications is placed last.

Often, the earlier decimators, which also have the highest rates, are cho-
sen to have simplified structures, such as simple averaging filters. For exam-
ple, the decimation version of the hold interpolator is obtained by dividing
by L to restore its DC gain to unity:

11-¢* 1
o :_[1+<_1‘|‘C_2+"'—|-C_(L_l)]

HO=11-=771

where (! is one high-rate delay. Thus, the decimator becomes a simple
FIR averaging filter that averages L successive high-rate samples:

'(nL) +a2'(nL —1)+2'(nL —2)+---+2'(nL — L+1)
L
If so desired. the cruder passbands of the earlier decimators can be equal-

ized by the last decimator, which can also equalize any imperfect passband
of the analog antialiasing prefilter used prior to sampling.

Ydown (_”'J —



One of the main uses of decimators 1s to alleviate the need for high-
quality analog prefilters, much as the interpolators ease the specifications of
the anti-image postfilters.

This idea 1s used in many current applications, such as the sampling sys-
tems of DAT machines, PC sound cards, speech CODECs, and various types
of delta-sigma A/D converter chips.

Sampling an analog signal, such as audio, at its nominal Nyquist rate f;
would require a high-quality analog prefilter to bandlimit the input to the
Nyquist frequency fmax = fs/2.

In a sampling system that uses oversampling and decimation, the analog
input is first prefiltered by a simple prefilter and then sampled at the higher
rate f,' = L.

The decimation filter then reduces the bandwidth of the sampled signal
to f,/2. The sharp cutoffs at the Nyquist frequency f,/2 are provided by
the digital decimation filter instead of the prefilter. The specifications of the
analog prefilter and decimator are shown below.



A passband spectral images

/ prefilter / introduced by sampling \
/ T stopband
Asl.op /
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The decimator removes all frequencies from the range | f /2. Lfs— fs/2].
But because of periodicity, it cannot remove any frequencies in the range
Lfs £ fs/2. Such frequencies, if present in the analog input, must be re-
moved by the prefilter prior to sampling; otherwise they will be aliased
back into the desired Nyquist interval [—f,/2, f</2]. Therefore, the pre-
filter’s passband and stopband frequencies are:

Is fs

fpass:?~ fstop:Lfs_?

The transition width of the prefilter is Af = fop — fpass = (L — 1) f;
and gets wider with the oversampling ratio L. Hence, the filter’s complexity
reduces with increasing L.



In summary, oversampling in conjunction with decimation and interpo-
lation alleviates the need for high-quality analog prefilters and postfilters
by assigning the burden of achieving sharp transition characteristics to the
digiral filters.

The figure below shows an oversampling DSP system in which sampling
and reconstruction are carried out at the fast rate f,’, and any intermediate
digital processing at the low rate f,.

fast clock f;’ L-fold decimator
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analog analog
input ' prefilter

L-fold interpolator fast clock f;”

low-rate % %
digital signal —— T L > Himerp ——— | DAC —»
from DSP, CD, etc.  f, | S

analog analog
postfilter > output

A second major benefit of oversampling is that it also simplifies the struc-
ture of the A/D and D/A converters shown in the figure, so that they require
fewer bits without sacrificing quality.

This is accomplished by the principle of feedback quantization, which
we discuss later on. The changes in the above figure are to replace the con-
ventional ADC block by a delta-sigma ADC operating at fewer bits (even 1
bit), and insert between the output interpolator and the DAC a noise shaping
quantizer that requantizes the output to fewer bits.



Sampling Rate Converters

Interpolators and decimators are examples of sampling rate converters that
change the rate by infeger factors. A more general sampling rate converter
can change the rate by an arbitrary rational factor, say L/M. so that the
output rate will be related to the input rate by:

I L
fs _ifs

Such rate changes are necessary in practice for interfacing DSP systems
that might be operating at different rates. For example, to convert digital
audio for broadcasting, sampled at 32 kHz, to digital audio for a DAT ma-
chine, sampled at 48 kHz, one must use a conversion factor of 48/32 = 3 /2.
Similarly, to convert DAT audio to CD audio at 44.1 kHz, one must use the
factor 44.1/48 = 147/160.

The rate conversion can be accomplished by first increasing the rate by a
factor of L to the high rate f,” = Lf, using an L-fold interpolator, and then
decreasing the rate by a factor of A downto f, = f/M = Lf,/M using
an M-fold decimator.



Note that f,” is an integer multiple of both the input and output rates. and
the corresponding sampling time interval, 7" = 1/f,”. is an integer fraction
of both the input and output sampling times 7" and 7":

" : / A T - T
Rl Li=MfL T ==
or,
Sh’ T
f.sH:Lfs- fsf: f,ur 3 'T”:E. T = MT"
upsample “—V'J—" N — downsample

downsample upsample

Because both the interpolation and the decimation filters are operating at
the same high rate of f,” and both are lowpass filters, they may be combined
into a single lowpass filter preceded by an upsampler and followed by a
downsampler, as shown below

sampling rate converter

__________________________________________________________________________________________________________________________________________________
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filter



The interpolation filter must have cutoff frequency f. = f." /2L = f,/2
and the decimation filter f. = f,” /2M = f,'/2. Thus, the cutoff frequency
of the common filter must be chosen to be the minimum of the two:

]_ = Jl'
fo= 3 min( fs, fs')

which can be written also in the alternative forms:

o 1£E_.- MONE (1LY
fc—llll]l Vi 1111 L 5 111111 M 9

In units of the high-rate digital frequency w” = 27 f/ f.”, we have:

[
gy 2nfe oymow
W, = —7 =min | —

© T L ﬁ) - max(L, M)

i

When f,/ > f,. the common filter acts as an anti-image postfilter for
the upsampler, removing the spectral replicas at multiples of f; but not at
multiples of Lf,. When f, < f.. it acts as an antialiasing prefilter for the
downsampler, making sure that the down-shifted replicas at multiples of f’
do not overlap.



The design of the filter is straightforward. Assuming a filter length N
of the form N = 2LK + 1 (we use A instead of M to avoid confusion
with the downsampling factor 1), and passband gain of L., we define the

windowed impulse response, with respect to the high-rate time index n” =
0,1,..., N —1:

sin(w? k")

h(n") =w(n")dn" — LK), where d(k")=1L =
TR

where w(n”) is any desired length-N window. Its L polyphase subfilters,
each of length 2/, are defined for,z = 0.1, ..., L—-1:

hi(n) = h(Ln +1). n=01,..., 2K —1

Next, we discuss the time-domain operation and implementation of the
converter. The input signal z(n) is upsampled to the high rate f.,”. Then,
the upsampled input x,,(n") is filtered. generating the interpolated output
Yup(n”). which is then downsampled by keeping one out of every 1/ sam-
ples, that is, setting n” = Mn' to obtain the desired signal y(n’) resampled
at rate f,'. Thus, we have:

Yup (" E h(m")azyp(n" —m")

?'ﬁ‘,_

— yl]p(ﬂ[nlr)

y(@') = ("))
n=Ivin



The interpolation operation can be implemented efficiently in its polyphase
realization. Setting n” = Ln +1¢, withz =0,1, ..., L — 1, we obtain the ith
sample interpolated between the input samples x(n) and x(n + 1), by,

yi(n) = yep(Ln +1) Z hi(m)z(n —m) = h?w(n)

m=0

where P = 2/ —1 1s the order of the polyphase subfilters (the time-advance
required for causal operation is not shown here), and the low-rate tapped
delay line, w = [wp, w1, . . ., wp|?. is used by all polyphase subfilters before
it is updated.

Because the downsampler keeps only every Mth filter output, it is not
necessary to compute all L interpolated outputs between input samples.
Only those interpolated values that correspond to the output time grid need
be computed.

Given an output sample time. n” = Mn’, we can write it uniquely in the
form, Mn" = Ln+1i, where 0 < ¢ < L —1. It follows that the downsampled
output will be the ith interpolated value arising from the current input x(n)
and computed as the output of the ith polyphase subfilter h,; :

y(n') = yup(fl['n.’) = Yup(Ln +1) = y;(n)



The pattern of polyphase indices 2 that correspond to successive output
times n' repeats with period L, and depends only on the relative values
of L and M. Therefore, for the purpose of deriving a sample processing
implementation of the converter, it proves convenient to think in terms of
blocks of output samples of length L. The total time duration of such an
output block is LT" = MT,

Tooek = LT = LMT" = MT

Thus, within each output time block there are A input samples, LM
high-rate interpolated samples, and L output samples. The M input sam-
ples get interpolated into the LA high-rate ones, from which the L output
samples are selected.

The computational rate 1s M times smaller than the polyphase rate NV f
required for full interpolation. Indeed. we have 2A° MACs per polyphase
filter output and L polyphase outputs in each period Ty, that 1s, R =
2K L/ Thoek = N/Tyoek = N/MT = N f,/M. Equivalently, we have one
polyphase output in each output period 7", R = 2K /T" = 2K f,. Thus,

Nfo _ N/

R= _ K f!
M I L
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The figure below shows an example with L = 5 and M = 3. so that
f' = 5f,/3. The interpolating high rate is f,” = 5f, = 3f,’. The top
and bottom figures show the input and output signals and their spectra. The
two middle figures show the high-rate interpolated signal. viewed both with
respect to the input and output time scales.

X, - filter
X j T e | i
o B ViV Van Vo an W,
T 0 S 2 3 4 S
!=’i5i“i’i”----l J /__\ """ pomees oo qrmmomeeee s S Si-c
i=0 3 1 4 2  »lieT/5=T" 0 i 2 3 4 SfEf
R A n T .
y A Y3 v = TI3=T" 0 fs’ 2 s’ Bf;’: _-;H
i ‘ | J LT\ N LN .jf
T o1 g o, 3,
e 15T""=3T=5T —-min(f,, £)

Because f,' > f.. the interpolation filter has cutoff f,/2. and acts as an
antialiasing prefilter removing the four input replicas up to f," = 5f,. The
downsampling operation then downshifts the replicas at multiples of f,’.

In the time domain. each block period Thoexk = 157" = 3T = 51"
contains three input samples, say {xg, r1, r2}, five output samples, say {o,
Y1, Y2, Y3, Y4}, and 15 interpolated high-rate samples.
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As can be seen in the figure, the first input period from x( to z1 contains
two outputs: vp, y1. We have time-aligned the samples so that vy = xg.
The output v, is the third (¢ = 3) interpolated value, and therefore, it is
obtained as the output of the polyphase filter hy with current input z. After
this operation, the input sample xg 1s no longer needed and the delay-line w
holding the input samples may be shifted and the next input x; read into it.

During the next input period from xq to xs, there are two more outputs:
Y2, y3. The output v is the first (z = 1) interpolated value, and therefore,
it 1s the output of the filter hy, whereas the output 5 is the fourth (z = 4)
interpolated value, or the output of hy. After this operation, the delay-line
w may be updated and x5 read into it.



Finally, the third input period starting at x5 contains only one output,
namely, y4, Which is the second (7 = 2) interpolated value, or the output of
h, with input zy. After this operation, the delay-line may be shifted and the
same computational cycle involving the next three inputs repeated.

The above steps may be summarized in the following sample processing
algorithm:

for each input block {xq, x1, 29} do:
wp = Iy
Yo = hg‘ﬂr = Iy
yi=hyw
delay( P, w)
wp = I
y2 =hiw
ys =hyw
delay (L, w)
wWp = L9
ys =hyw
delay( P, w)
end input block

The outputs {vg, y1, Y2, 3, Y4} Were computed by the five polyphase fil-
ters {hg, hs, hy. hy, hy} corresponding to the sequence of polyphase indices
i = {0,3,1,4,2}. The input samples that were used in the computations
were {xg, xg, 1, T1, T2}, so that the corresponding index of z,, was n = {0,
0,1, 1,2}. When the index n was repeated, the delay line was not updated.



[t is easily seen from the above figure that the patterns of i’s and n’s get
repeated for every group of five outputs. These patterns can be predeter-
mined as the solutions of the equations, 5n 4+ i = 3m, form = 0,1, ..., 4.

In general, we can calculate the patterns by solving the L equations:
Ln,, +tm = Mm, m=0,1...., L—1

with solution (where % denotes the modulo operation):

for, m=0,1,..., L — 1, compute:
im = (Mm)% L (polyphase selectors)
N = (Mm —14,,)/ L

For example, the solutions of, 5n + ¢ = 3m, can be verified explicitly

m=0, =0, n=0
m=1. 1=3 n=0
m=2, 1=1, n=1
m=3, 1=4, n=1
m=4, 1=2, n=2



Assuming that the sequences {i,,. n,}.m =01,.... L — 1. have been
precomputed, the general sample rate conversion algorithm that transforms

each length- M input block, {xg, x1, ..., za_1}. into alength-L output block,
{vo.y1, ..., yr_1}. can be stated as follows:
for each input block, {zg, 71, .. .. ryr—1}. do:
for, n=0.1...., M — 1. do:
wy = T,

for, Ln/M <m < L(n+ 1)/M, do:
U = h?mW'
delay( P, w)
end n—loop
end block

The inner loop ensures that the output time index m lies between the two
input times Ln < Mm < L(n + 1), with respect to the 7" time scale.
Because Mm = Ln,, + i,,. 1t follows that such m2’s will have n,,, = n. The
index 7, serves as a polyphase filter selector.

In the special cases of interpolation (M = 1). or decimation (L = 1), the
algorithm reduces to the corresponding sample processing algorithms given
in plain interpolation or plain decimation.



Another example is shown below that has L = 3, M = 5 and decreases
the sampling rate by a factor of 3/5 so that f," = 3f,/5. The interpolating
high rate is now f,” = 3f, = 5f,/. Because f. < f,, the filter’s cutoff
frequency must be f. = f.'/2, and therefore, the filter acts as an antialias-
ing filter for the downsampler. The filter necessarily chops off those high
frequencies from the input that would otherwise be aliased by the downsam-
pling operation, that is, the frequencies in the range f,'/2 < f < f,/2.
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In the time domain, each block of five input samples {xg, x1, x9, r3, 4}
generates a block of three output samples {yg. 71, y»}. The solution of the
polyphase selector equations, 3n + 7 = Sm, are form = 0,1, 2,

M = {0. 1.3}, iy = {0.2,1)



Thus, only the inputs {z¢, 1, x5} will generate interpolated outputs, with
the polyphase subfilters {hy, hy, hy}. The inputs {9, 24} will not generate
outputs. but still must be shifted into the delay-line buffer. The same conclu-
sions can also be derived by inspecting the above figure. The corresponding
sample processing algorithm is now,

for each input block, {xq, r1, z9, x3, x4}, do:
wo = T
Yo = h{JTW = Tp
delay(, w)

wp = 1
y1 = hyw
delay(, w)
wo = T2
delay( P, w)
Wy = I3
yy =hiw
delay( P, w)
wo = Ty

delay( 2, w)




As another example, consider a 2/3 sample rate converter
, 2
fs — § f.s

Here, the filter operates at the fast rate f,” = 3f,/ = 2/, and acts as an
antialiasing filter for the downsampler, that is, it removes the high frequen-
cies from the input at multiples of f,, so that the downshifted replicas at
multiples of f," will not overlap.
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Because 7' = 7" /2 and T" = 1" /3, it follows that the basic block in-
terval will be Tyoexk = 61" = 3T = 277, containing 3 input-rate samples
{zg,x1, 19} and 2 output-rate samples {yg, v1 }. The interpolated output ¥,
that lies halfway between xy and x5 1s obtained by the polyphase filter h;.
Indeed, the polyphase selector indices can be precomputed by

im =3m%2=1[0,1], for,m=0,1



The sample processing algorithm of the 2/3 sample rate converter will be:

for each input block, {xg, z1, x2}. do:
Wy = I'p
Yo = hg“’ = Iy
delay (P, w)
wp — Iq
yp =hiw
delay( P, w)
Wy = I'9
delay(F, w)

where P = 2K — 1 is the order of the polyphase subfilters hy, hy, and
w is the length-(” 4 1) input-rate delay-line buffer. Note that there is no
interpolated output after x5 (the next two outputs come from the next group
of three inputs), and therefore, x5 1s simply read into the buffer w and the
delay line 1s updated.



The reverse converter by a ratio 3/2 is shown below. Here. the filter acts
as an anti-image filter for the upsampler.
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In this case, we have f, = 3f,/2. The fast rate is f," = 2f, = 3/,
kHz. The input-rate and output-rate sampling intervals are 7" = 37" and
T" = 277, and the basic time block. Thoexk = 67" = 27T = 371’. Thus,
every group of two input samples {xg, r1 } generates a group of three output
samples {yo, y1. Yo}



As can be seen in the figure, the polyphase selector sequence is
b =2m %3 =10,2,1],  for,m =0,1,2

Therefore, the three interpolated outputs {yg, y1, y2} Will be computed by
the three polyphase subfilters {hg, hy, h;}. The corresponding sample pro-
cessing algorithm will be:

for each input block, {xq, x1}, do:
W = Iy
yo =hjw =z
vy =hiw
delay (., w)
wp = 11
yo =h{w
delay (., w)




For a converter with L/M = 7/4, we have f,' = 7f,/4 and
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The filter acts as an anti-image postfilter for the upsampler, removing the
L — 1 = G replicas between multiples of the fast rate f,”. The downshifting
of the replicas caused by the downsampling operation will position replicas
at the 3 multiples of the output rate f,. 2f,’. and 3f,".
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In the time domain. each input block of 4 input-rate samples {xq, 71, r9, 73}
generates 28 fast-rate interpolated samples, out of which 7 output-rate sam-
ples {vo, y1, 2. U3, Y4, Ys, ys } are selected and computed according to their
polyphase indices:

=4dm%7T=10,4,1,5,2,6,3], for,m=0,1,2,3,4.56
N = (dm —i,,) /T = [(J 0,1,1,2,2, 3]

whenever the index n,, is repeated. the input-rate polyphase delay line is
not updated. The sample processing conversion algorithm is as follows:

for each input block, {xq, x1, z9. r3}, do:

Wy = Iy

o = hjw = 0

yp =hjw
delay(F, w)
Wy — 14

yo =h{w

y3 = hiw
delay(F, w)
Wy = &9

ys =hjw

ys = h{w
delay(F, w)
Wy — &3

ys = hyw
delay(F, w)




Inthe L /M = 4/7 case, we have f,' =4f,/7 and
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The filter acts as an antialiasing prefilter for the downsampler, removing the
3 replicas between multiples of the fast rate f,”. The downshifting of the
replicas caused by the downsampling operation will position replicas at the
6 multiples of the output rate f.", 2f.,". ..., 6f, . without overlapping.
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In the time domain, each input block of 7 input-rate samples {xq, x1, x9, 23,
1y, Ty, 6 } generates 28 fast-rate interpolated samples, out of which 4 output-
rate samples {yo, y1. y2. y3} are selected and computed according to their
polyphase indices:

i =Tm %4 =10,3,2,1], for,m=0,1,2,3
N = (T — i) /4 = 10,1, 3, 5]
Only the input samples zg, z1, x3. x5 will produce output samples. How-

ever, for the remaining input samples the delay line must be updated. Thus,
the sample processing conversion algorithm will be as follows:

for each input block, {xq, z1, 29, 23, 1y, T35, 74 }. dO:

Wy = I'p

Yo = hOTw = Iy
delay(F, w)
Wy = I

Y1 = h%fw
delay (P, w)
Wy = I'9
delay( P, w)
wp = &'y

ys =hjw
delay( P, w)
Wy = T4
delay( P, w)
wp = Iy

ys =hiw
delay( P, w)
Wy = Ig

delay( P, w)




12SP
Ch.2

12SP
Ch.12

Noise Shaping Quantizers

The main purpose of noise shaping is to reshape the spectrum of quantiza-
tion noise so that most of the noise is filtered out of the relevant frequency
band. such as the audio band. Noise shaping is used in four major applica-

tions in DSP:

e Oversampled delta-sigma A/D converters.

e Oversampled requantizers for D/A conversion.

e Non-oversampled dithered noise shaping for requantization.
e Non-oversampled roundoff noise shaping in digital filters.

In the oversampled cases, the main objective is to trade off bits for sam-
ples, that is, increasing the sampling rate but reducing the number of bits
per sample. The resulting increase in quantization noise is compensated by
a noise shaping quantizer that pushes the added noise out of the relevant
frequency band (e.g., out of the audio band) in such a way as to preserve a
desired level of signal quality. The reduction in the number of bits simplifies

the structure of the A/D and D/A converters.




In the non-oversampled cases, one objective is to minimize the accumu-
lation of roundoff noise in digital filter structures. Another objective is to
reduce the number of bits without reducing quality. For example. in a dig-
ital audio recording and mixing system where all the digital processing is
done with 20 bits, the resulting audio signal must be rounded eventually
to 16 bits in order to place it on a CD. The rounding operation can cause
unwanted granulation distortions.

Adding a dither signal helps remove such distortions and makes the
quantization noise sound like steady background white noise. However,
further noise shaping can make this white noise even more inaudible by
concentrating it onto spectral bands where the ear is least sensitive.

A related application in digital audio is to actually keep the bits saved
from noise shaping and use them to carry extra data on a conventional CD,
such as compressed images, speech, or text, and other information. This
“buried” data channel is encoded to look like pseudorandom dither which is
then added (subtractively) to the CD data and subjected to noise shaping.



Quantization Process

We review briefly the quantization process and quantization noise shaping,
deriving the tradeoff between oversampling ratio and number of bits (see
[2SP-Ch.2). Then, we discuss the actual realization of noise-shaping quan-
tizers.

Sampling and quantization are the necessary prerequisites for any digital
signal processing operation on analog signals. A sampler and quantizer
are shown below. The hold capacitor in the sampler holds each measured
sample x(n1") for at most 1" seconds during which time the A/D converter
must convert it to a quantized sample, xq(n1"), which is representable by a
finite number of bits, say B bits. The B-bit word is then shipped over to the
digital signal processor.

B bits/sample

i sampler & quantizer | quantized

i sample & hold i signal xg(nT)
) | nT) /> S —-

T i __» to DSP
analog 1| 7 sampled converter T ©
signal | L | signal

After digital processing, the resulting B-bit word is applied to a D/A
converter which converts it back to analog format generating a staircase
output. In practice, the sample/hold and ADC may be separate modules or
may reside on board the same chip.



The quantized sample xq(n71'), being represented by B bits, can take
only one of 28 possible values. An A/D converter is characterized by a
full-scale range R, which is divided equally (for a uniform quantizer) into
28 quantization levels. The spacing between levels, called the quantization
width or the quantizer resolution, is given by:

. R

This equation can also be written in the form:

R

Q

which gives the number of quantization levels.
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Typical values of R in practice are between 1-10 volts. The above figure
shows the case of B = 3 or 2P = & levels, and assumes a bipolar ADC for
which the possible quantized values lie within the symmetric range:

R R

The quantization error is the error that results from using the quantized
signal zg(n1’) instead of the true signal x(n1"), that 1s,

e(nT) = xq(nT") — x(nT)
In general, the error in quantizing a number x that lies in [— R /2, R/2) is:
€ = aIQ — &

where xg 1s the quantized value. If = lies between two levels, it will be
rounded up or down depending on which is the closest level. Thus, the error
e can only take the values

Q

_;<e<g
2 — 2



Therefore, the maximum error is eqa = /2 in magnitude. This is an
overestimate for the typical error that occurs. To obtain a more represen-
tative value for the average error, we consider the mean and mean-square
values of e defined by:

1[92 1 [Q/2 )2
€= — / ede =0, and 2= — e de = i
(2 —Q/2 (2 -Q/2 12

The result e = 0 states that on the average half of the values are rounded
up and half down. Thus, € cannot be used as a representative error. A more
typical value is the root-mean-square (rms) error defined by:

— 0 R
€rms — e? = — 2B
V12 V12

These results can be given a probabilistic interpretation by assuming that
the quantization error e is a random variable which is distributed uniformly
over its range, that is, having probability density:

_ § A ple)

i if —Q <e< (— 170
Ho={ Q@ 2777

(0 otherwise - C

—0on 0 on
The normalization 1/¢) is needed to guarantee:

Q/2
/ ple)de =1
—Q/2



It follows that  and €2 represent the statistical expectations:

Q/2 Q/2

€= Fle] = / ep(e) de, e? = Ele?] = f e?p(e) de
—Q/2 —-Q/2

Since R and ) as the ranges of the signal and quantization noise, the
ratio, R/() = 2B. may be considered as a signal-to-noise ratio (SNR). It
can be expressed in dB:

R _. .
2(] logm (Q) = 2” 1(1%10(23) = B : 2[} 1‘3«‘3410 2 ~ bB or,

R :

SNR = 20 logy, (Q) =60 dB| (6-dB-per-bit-rule)

which is referred to as the 6 dB per bit rule. This equation represents the
dynamic range of the quantizer and can be used to determine the wordlength
B if the full-scale range and desired rms error are given. For example, to
match the 100-dB range of the human hearing, one needs to use at least

B = 106 bits, since. 6 B = 96 dB.




The probabilistic interpretation of the quantization noise is very useful
for determining the effects of quantization as they propagate through the rest
of the digital processing system. The quantization noise definition, ¢(n) =
x(n) — xq(n), can be rewritten as,

ro(n) = z(n) +e(n)

Thus, we may think of the quantized signal xg(n) as a noisy version of the
original unquantized signal =(n) to which a noise component ¢(n) has been
added. Such an additive noise model of a quantizer is shown below.
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In general, the statistical properties of the noise sequence e(n) are very
complicated. However, for so-called wide-amplitude wide-band signals,
that is, signals that vary through the entire full-scale range I? crossing often
all the quantization levels, the sequence ¢(n) may be assumed to be a sta-
fionary zero-mean white noise sequence with uniform probability density
over the range [—()/2, Q) /2]. Moreover, ¢(n) is assumed to be uncorrelated
with the signal x(n). The average power or variance of e(n) has already
been computed above:

o2 = E[e*(n)] 5




Oversampling and Noise Shaping

In the frequency domain, the assumption that e(n) is a white noise sequence
means that it has a flat spectrum. More precisely, the total average power
o2 of e(n) is distributed equally over the Nyquist interval [—f, /2. f,/2]. as
shown below.

A Serf(f) 2
— o/
-
N A
Thus, the power spectral density of e(n) will be,
T fs s

See(f) for —S<fs7

:f—s'.

and it is periodic outside this interval with period fs. The noise power within
any Nyquist subinterval [f,, /3] of width Af = f, — f, is given by

Qﬁz be_fa
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As expected, the total power over the entire interval Af = f¢ will be
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Noise shaping quantizers reshape the spectrum of the quantization noise into
a more convenient shape. This is accomplished by filtering the white noise
sequence e(n) by a noise shaping filter Hns( f ). The equivalent noise model
for the quantization process is shown below.

i ¢ e(n) |

B

| o) | zrg(n) = x(n) + £(n)
x(n) i /*\ i Xgl(n)

where =(n) denotes the filtered noise. The power spectral density of £(n) is
no longer flat, but acquires the shape of the filter Hys( f):

2

fs

The noise power within a given subinterval | f,, f;] is obtained by integrating
Sze(f) over that subinterval:

See(f) = |Hns(f)|*

See (f | HNS ‘

b fo
Power in [fa.fb]:/f - (f) df_j—]f | Hys () df



The concepts of sampling and quantization are independent of each other.
The first corresponds to the quantization of the time axis and the second to
the quantization of the amplitude axis. Nevertheless, it is possible to trade
off one for the other. Oversampling can be used to alleviate the need for
high quality prefilters and postfilters. It can also be used to trade off bits for
samples.

In other words, if we sample at a higher rate, we may use a coarser
quantizer. Each sample will be less accurate, but there will be many more
of them and their effect will average out to recover the lost accuracy.

The idea is similar to performing multiple measurements of a quantity,
say =. Let o2 be the mean-square error in a single measurement. If L
independent measurements of x are made. it follows from the law of large
numbers that the measurement error will be reduced to o2/L. improving
the accuracy of measurement. Similarly, if o2 is increased, making each
individual measurement worse, one can maintain the same level of quality
as long as the number of measurements L is also increased commensurately
to keep the ratio o2/ L constant.



Consider two cases. one with sampling rate f, and B bits per sample, and
the other with higher sampling rate f! and B’ bits per sample. The quantity,

f‘!
L ===
fs
is called the oversampling ratio and is usually an integer. In such case, B’
can chosen to be less than B and still maintain the same level of quality.
Assuming the same full-scale range I for the two quantizers, we have the
following quantization widths and quantization noise powers,
(__2‘2 | ) (__2!2
Q=R2PB o¢?=="_ and Q' =R27F, 6 o%?="_
© 12 ‘ 12
To maintain the same quality in the two cases, we require that the power
spectral densities remain the same, that is,

o2 _oP
Is Il
which can be rewritten as.
12 12
2 {Te . e
o, = fo— = —



Thus. the total quantization power o2 is less than ¢/ by a factor of L.
making B greater than B’. The meaning of this result is shown pictorially
below. If sampling is done at the higher rate f’, then the total power /2 of
the quantization noise is spread evenly over the f! Nyquist interval.

2
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The shaded area gives the proportion of the o2 power that lies within the
smaller f, interval. Solving for L and expressing it in terms of the difference
AB =B — B’, we find:

Ur?
[ — ¢ — QQ(B—B’) _ 2*2,1‘.5’
a

M b

or, equivalently,

AB =0.5logy L

that is, a saving of half a bit per doubling of L. This is too small to be
useful. For example, in order to reduce a 16-bit quantizer for digital audio
to a |-bit quantizer, that is, AB = 15, one would need the astronomically
large oversampling ratio of L = 2%,



A noise shaping quantizer operating at the higher rate f! can reshape the flat
noise spectrum so that most of the power is squeezed out of the f, Nyquist
interval and moved into the outside of that interval. The figure below shows
a typical power spectrum of such a quantizer.
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The total quantization noise power that resides within the original f;
Nyquist interval is the little shaded area in this figure. It can be calculated
by integrating the power spectral density over [— /2, fs/2]:

9 OJE fs,"lg 9
=T [ ()P
T g
We will see later that a typical pth order noise shaping filter operating at
the high rate f! has magnitude response:
— 2p /
2 sin (;)

|HNs(f)|2 -




For small f, we may use the approximation, sin r ~ x, to obtain:
27 f
f.F
S

Assuming a large oversampling ratio L, we will have f, < f., and there-
fore, this approximation is justified for. | f| < fs/2. This gives,

; 2 2p+1
gt = g—f B (2?#) pdf — o2 s (fs) "
R A SR N C2p+1 \ [

” 2P 1
¢ 2p+1 L2+l

2p
|stnf)|?=( ) Cfor |f] < £1/2

Using 02/0? = 272(B=8) = 97248 we obtain:
2
9—-24B _ _ T ! 1
o+ 1 L+

Solving for AB, we find the gain in bits arising from oversampling,

2P
AB = (p+0.5) logy L — 0.5 log, (2 n 1)
j




Now, the savings are (p + 0.5) bits per doubling of L. Practical values
for the order p are p = 1,2,3,4. 5. The table below compares the gain in
bits AB versus oversampling ratio L for various quantizer orders.

P L il 8 16 | 32| 64 | 128
0| AB =0.5log, L LO| 1.5 20| 25| 3.0 3.5
1 AB=15log, L—036 (21| 36| 51| 66| 81| 9.6
21 AB=25logy L —214 29| 54| 791041129154
3| AB =35logy L —3.55 3.5 7.0[10.5|14.017.5]21.0
11 AB =45logy L —5.02 | 4.0 85| 13.0|17.522.0]26.5
b| AB =5.5logyg L —6.53 4.5 10.0]15.5|21.0]26.5|32.0

The first CD player built by Philips used a first-order noise shaper with
4-times oversampling, that is, p = 1, L = 4, which according to the table,
achieves a savings of AB = 2.1 bits. In fact. the Philips CD player used a
[4-bit, instead of a 16-bit, D/A converter at the analog reconstructing stage.

We also see from the table that to achieve 16-bit CD-quality resolution
using |-bit quantizers, that 1s, AB = 15, we may use a second-order 128-
times oversampling quantizer. For digital audio rates f, = 44.1 kHz, this
would imply oversampling at f! = Lf, = 5.6 MHz, which is feasible with
the present state of the art. Alternatively, we may use third-order noise
shaping with 64-times oversampling.



An overall DSP system that uses oversampling quantizers with noise
shaping is shown below. Sampling and reconstruction are done at the fast
rate f! and at the reduced resolution of B’ bits.

Intermediate processing by the DSP is done at the low rate f, and in-
creased resolution of B bits. The overall quality remains the same through
all the processing stages. Such a system replaces a traditional DSP system.

analog Lo
input analo noise-shaping digital DSP
> Al E | » delta-sigma  ——— "= decimation ——— —
prefilter A/D /
converter | f.' rate filter f; rate
B’ bits B bits
from analog
DSP dioi " Wi output
gital . : B’ -bit
——— = interpolation —— fo1se Shtqpmg ——— | staircase [» anftfl_(l)tg >
filter , requantizer , DAC postiiter
f; rate fg rate f rate
B bits B bits B’ bits

The faster sampling rate f! also allows the use of a less expensive, lower
quality, antialiasing prefilter. The digital decimation filter converts the fast
rate f! back to the desired low rate f, at the higher resolution of B bits and
removes the out-of-band quantization noise that was introduced by the noise
shaping quantizer into the outside of the f, Nyquist interval.
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After digital processing by the DSP, the interpolation filter increases the
sampling rate digitally back up to the fast rate f.. The noise shaping re-
quantizer rounds the B-bit samples to I’ bits, without reducing quality.
Finally, an ordinary B’-bit staircase D/A converter reconstructs the samples
to analog format and the postfilter smooths out the final output. Again, the
fast rate f allows the use of a low-quality postfilter.

Oversampling DSP systems are used in a variety of applications, such as
digital transmission and coding of speech, the sampling/playback of audio
systems.



Delta-Sigma Noise-Shaping Quantizers

We discuss the structure of noise shaping quantizers and A converters
next, beginning with a first-order quantizer.

The figure below shows a typical oversampled first-order delta-sigma
A/D converter system. The analog input 1s assumed to have been prefiltered
by an antialiasing prefilter whose structure is simplified because of over-
sampling. The relevant frequency range of the input is the low-rate Nyquist
interval fg/2.
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The analog part of the converter contains an ordinary A/D converter op-
erating at the fast rate f,’ = L[, and having a small number of bits, say B’
bits. The most useful practical choice is B = 1, that is, a two-level ADC.
The output of the ADC is reconstructed back into analog form by the DAC
(i.e., a two-level analog signal, if B’ = 1) and subtracted from the input.

The difference signal (the “delta™ part) is accumulated into the integrator
(the “sigma™ part) and provides a local average of the input. The feedback
loop causes the quantization noise generated by the ADC to be highpass
filtered. pushing its energy towards the higher frequencies (i.e., f.'/2) and
away from the signal band.



The digital part of the converter contains an L-fold decimator that re-
duces the sampling rate down to f, and increases the number of bits up to
a desired resolution, say B bits, where B > B’. In practice. the analog and
digital parts reside usually on board the same chip.

The lowpass decimation filter does three jobs: (1) It removes the high-
frequency quantization noise that was introduced by the feedback loop, (2) it
removes any undesired frequency components beyond f /2 that were not re-
moved by the simple analog prefilter, and (3) through its filtering operation,
it increases the number of bits by linearly combining the coarsely quantized
input samples with its coefficients, which are taken to have enough bits.

To see the filtering action of the feedback loop on the input and quantiza-
tion noise, we consider a sampled-data equivalent model of the delta-sigma
quantizer. The time samples, at rate f,’. are denoted by 2/(n’) in accordance
with our notation in this chapter.

accumulator H() e'(n"), E'({) = quantization noise
x' ?’1’) ! i }“‘i“‘l }’!(H’)
+ | y | | | _
an | C | > » to decimator
X'(©) - | e j Y'()
i i quantizer

___________________________ model




The ADC 1s replaced by its equivalent additive-noise model and the integra-
tor by a discrete-time accumulator H () with transfer function:
-1

where ¢! denotes a high-rate unit delay. The numerator delay ¢! is nec-
essary to make the feedback loop computable.
Working with ¢-transforms, we note that the input to H(() is the differ-

ence signal X'(¢) — Y’(¢). Its output is added to E’(() to generate Y'(().

H(O[X'(Q) = Y'(Q)] + E'(¢) = Y'(¢)
which may be solved for Y/(() in terms of the two inputs X'(¢) and £'(():

HO iy —1 o

Y'() = L+ H(() L+ H(C)




It can be written in the form:

Y'(¢) = H.(O)X'(¢) + Hxs(Q)E'(¢)

where the noise shaping transfer function Hys(¢) and the transfer function
for the input H,(() are defined as:

H(¢) 1

Hx(C):TH(Q) HNS(CJ :TH(C)

Replacing H (¢ ), we find for the first-order case:

H.(¢)=¢", Hyxs(Q)=1-¢1

Thus, Hys(¢) 1s a simple highpass filter, and f,.(¢) an allpass plain delay.

The I/O equation becomes:

Y'(O)=¢'X'(O)+(1=¢CHE(Q)

or. in the time domain:

y!(”-f) = 41”-!('?1-! — 1) — E(n.‘r)

where we defined the filtered quantization noise:

e(n) = (n)—€d(n' —1) & &) =(1-¢hHE(Q)



Thus, the quantized output '(n') is the (delayed) input plus the filtered
quantization noise. Because the noise is highpass filtered, further processing
of y'(n") by the lowpass decimation filter will tend to average out the noise
to zero and also replace the input by its locally averaged. decimated, value.
A typical example of a decimator is the hold decimator, which averages L
successive high-rate samples.

By comparison, had we used a conventional B-bit ADC and sampled the
input at the low rate fs. the corresponding quantized output would be:

y(n) =x(n) +e(n)

where ¢(n) is modeled as white noise over [— f, /2, f5/2].

The “design™ condition that renders the quality of the two quantizing
systems equivalent and determines the tradeoff between oversampling ratio
L and savings in bits, is to require that the rms quantization errors and be the
same over the desired frequency band [— f,/2. f./2]. As we saw earlier, the
mean-square errors are obtained by integrating the power spectral densities
of the noise signals over that frequency interval, yielding the condition:

2 21
e — Ot
s

a

fs/2 ' )
] Hns(£)[2df
—f</2

Setting f,/ = Lfs and o./0s = 278/278" = 2748 where AB =
B — B’, we obtain the desired relationship between L and AB.



Higher-order delta-sigma quantizers have highpass noise shaping transfer
functions of the form,

Hys(Q) = (1= ¢
where p is the order. The frequency and magnitude responses of Hys(( ) are
obtained by setting ¢ = ¢*™f/f<" resulting in the expressions used earlier.

2 sin (%)

See [2SP-Ch. 12 problems for concrete realizations of second-order (p = 2)
and third-order (p = 3) cases.

2p

Hys(f) = (1= e Hys() =




Example.

To illustrate the time-domain operation of a delta-sigma quantizer, consider
the common 1-bit case that has a two-level ADC. Let ()(x) denote the two-
level quantization function defined by:

_ +1., if >0
Q(xr) = sign(x) = { 1. ifz<0

The corresponding block diagram of the quantizer is shown below, to-
gether with the computational sample processing algorithm. The quantity
wy 1s the content of the accumulator’s delay:

: _, ) ) for each input x, do:
'{D *’C} ¢ gRY - y = Q(ws)
B 1 quantizer v=I =Y

wg = wy + v
W = Wy




The following table shows the computed outputs for the two constant

inputs, r = 0.4 and z = —0.2, with the algorithm iterated ten times:
T w1 Y v wo T w1 Y v wo
0.4 0.0 1.0 | =0.6 | =0.6 —0.2 0.0 1.0 =121 -1.2
04 —-061]—-1.0 1.4 0.8 —02—-12|—-1.0 0.8 —-04
04| 0.8 1.0 | =0.6 0.2 —02|-04|-1.0 0.8 04
041 0.2 1.0 =0.6 ] =04 —().2 0.4 1.0} =12 | =0.8
04| -04]—-1.0 1.4 1.0 —0.2-0.8|—-=1.0 0.8 0.0
0.4 1.0 1.0 —=0.6 0.4 —0).2 0.0 1.0 —-1.21-1.2
04| 04 1.0 -061]—0.2 —02]-12|-1.0 0.8 —-04
04| —-02]—=1.0 1.4 1.2 —0.2]-04| 1.0 0.8 04
0.4 1.2 1.0 =0.6 0.6 —0).2 0.4 1.O| —=1.2 1 =08
04 0.6 1.0 —=0.6 0.0 —0.2-0.8|—=1.0 0.8 0.0

The average of the ten successive values of y are in the two cases, y = 0.4
and y = —0.2. Such averaging would take place in the decimator.



Example.

To illustrate the capability of a delta-sigma quantizer/decimator system to
accurately sample an analog signal. consider the first-order quantizer of the
previous example, but with a time-varying input defined with respect to the
fast time scale as:

;I?I('H-I) = 0.5 Sill(zﬁf[}'n"/fsi)- n'=0.1... .. 1] ot — 1

We choose the values f; = 8.82 kHz, f, = 44.1 kHz, L = 10, and
Nt = 200 samples. The fast rate is f,’ = 10 x 44.1 = 441 kHz, and the
normalized frequency fo/f," = 0.02.

We would like to see how the two-level quantized output y'(n’) of the
delta-sigma quantizer is filtered by the decimation filter to effectively re-
cover the input (and resample it at the lower rate). We compare three dif-
ferent decimation filters, whose frequency responses are shown below, with
magnified passbands on the right.



The first one 1s an L-fold averaging decimator with transfer function,

11=¢ct 1
G :_[1+<_1+<_2+._.+g—(L—1}]

HO=77=="71

The other two are designed by the window method, and have impulse re-
sponses:

sin(m(n’ — LM)/L)
m(n' — LM)

h(n') = w(n')

n=01... N-1

where N = 2LM + 1. One has the minimum possible length, that is,
N = 2LM + 1, with M = 1, giving N = 21, and uses a rectangular
window, w(n') = 1. The other one is designed by the Kaiser method using
a stopband attenuation of A = 35 dB and transition width Af = 4.41 kHz,
or Af/fs = 0.1 (about the cutoff frequency f. = fs/2 = 22.05 kHz). It has
length N = 201, M = 10, and Kaiser parameters ) = 1.88 and ov = 2.78.
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The output of the quantizer y'(n"), which is the input to the three decima-
tors, 1s shown below on the left graph: the output of the averaging decimator
is on the right.
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The outputs of the rectangular and Kaiser decimators are shown below.

rectangular—-window—sinc—decimator, N = 21 Kaiser-window—sinc—decimator, N = 201
1.5 T T T T T I I I I 1.5 T T T T T I I I I
— decimator output — decimator output
— analog input — analog input
1r y 1r y

or ! / : \ / '. f l'.\
YRR, ‘ N/ N/
0.5 \_J\_// l“\_}&_/"r..l i —05F M, M ‘\/ \L/
—-1F 4 1} 4
— 1 . 5 1 5 1 1 1

0 20 40 60 80 100 120 140 160 180 200 -1 0 20 40 &0 &0 100 120 140 160 180 200
fast time, n' fast time, n'



The averager recovers the mput sinusoid only approximately and with a
delay of (L—1)/2 = 4.5. Some of the high frequencies in y'(n") get through,
because they cannot be completely removed by the filter. This can be seen
from the decimator’s frequency response, which does not vanish everywhere
between [f,/2,10f, — fs/2], although it does vanish at the multiples mf,,
m=1,2,....9,

sin(mf/ fs)
Lsin(mf/10f;)
The outputs of the window designs are faithful representations of the input
sinusoid, with a filter delay of LM samples, that is, LA = 10 and LM =
100, respectively. The Kaiser decimator gives the best output because it acts
as a better lowpass filter,

What is being plotted in these graphs is the output of the decimation filter
before it is downsampled by a factor of L. = 10. The downsampled signal
1s extracted by taking every tenth output. The nine intermediate samples
which are to be discarded need not be computed. However, we did compute
them here for plotting purposes.

H(f)| =

See Project-10 for the case of a 2"d-order noise-shaping quantizer realization,
with the same input and the same decimation filters plus a 2"4-order comb (whose
frequency response is the square of the above averager).




Delta-Sigma DACs

Next, we discuss oversampled noise shaping requantizers for D/A conver-
sion. A typical requantizer system is shown below. The digital input is
incoming at rate f, and B-bits per sample.

It 1s upsampled and interpolated by an L-fold interpolator, which in-
creases the rate to f,'. The noise shaping requantizer reduces the number
of bits to B’ < B. This output is, then, fed into an ordinary B’-bit DAC,
followed by an anti-image postfilter (whose structure is greatly simplified
because of oversampling).

interpolator noise shaping requantizer ,
Jf;—ra[e E--....----......................_,,,,,,,,______________________________mi f’—rate E------------------------------..................._________________,,,,,.,,,______________________________é fs _ra'[e
B-bit i é bit quantizer W ~ B’-bits
“hiis ' TL |, |interpolation| = ™" 1S L(P\ w - 0 MSE. -
digital filter | e " to B'-bit
IPUL | ] . DAC and
loop filter - postfilter

H(C} ”"'—WLSH

The quantizer @) rounds the incoming B-bit word w by keeping the B’
most significant bits, say wysg, which become the output, y = wysp. The
requantization error is represented by the B — B’ least significant bits of
w, that 1s, wisg = w — wysg. Which 1s fed back through a loop filter and
subtracted from the input.

The feedback loop causes the quantization noise to be highpass filtered,
reducing its power within the input’s baseband by just the right amount to
counteract the increase in noise caused by the reduction in bits.



The figure below shows a model of the requantizer in which the quantizer
() 1s replaced by its equivalent noise model and the difference of the signals
around the quantizer generates the LSB signal and feeds it back.

e'(n’)
o o ..................... V)
I ‘_rate T T f:—lﬂt&
B-bits B’-bits
—€;+
loop filter
HQ)
e'(n’)

The quantized output is y'(n’) = w'(n') + €'(n'). so that y'(n’) — w'(n’) =
e¢'(n"). Therefore, the input to the loop filter is e’(n') itself. In the {-domain,

YH(Q) = W) + E'(¢C) and  W(C) = X'(C) — H(C)E'(C)
which gives the I/O equation:
Y'(€) = X'(O) + [1 = H(Q)]E'(¢) = X'(¢) + Hxs (O E'(C)
Thus, the effective noise shaping filter is
Hys(C) =1 - H(()

First-, second-, or higher-order filters Hys(() can be constructed easily by
choosing the loop filter as H(¢) = 1 — Hys(¢). for example:

H()=¢" _ Hys(¢)=(1—-¢7)
H) =2~ Hys(C)=(1—-¢)°



